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1 Introduction 

In this report, I would introduce my recent research on the topic of realizing a Memristive Three-

dimensional Neuromorphic Computing System. As we known, scaling down the transistor to gain 

more computational power will eventually reach the unsurmountable physical limitation [1]. In 

order to achieve more computing capability with low power budget, novel computing architectures 

and methodologies need to be developed. Neuromorphic Computing (NC), which is based on 

non-von Neumann architecture that mimics bio-neurological signal processing methodology with 

a non-binary data encoding scheme, holds great promise for the next generation of low power 

computing machine. This report introduces the fundamental background of the neuromorphic 

computing from the concept to the state-of-the-art hardware implementations. Moreover, I would 

discuss the proposed novel three-dimensional (3D) neuromorphic computing architecture 

combining the nanoscale device so-called memristor and monolithic 3D integration technology, 

which could reduce system power consumption, provide high connectivity, resolve routing 

congestion issues, and offer massively parallel data processing capability.  

2 Backgrounds 

2.1 Neuromorphic Computing 

Neuromorphic computing is a novel computing methodology that is fundamentally different 

from the traditional digital computer. A modern digital computer is designed intentionally to 

perform Boolean algebra and arithmetic under von Neumann architecture that separates the 

computing units (CPUs) and memory physically connecting with a data communication bus. 

Because of incompatibilities involving the fabrication process and the size mismatch between the 

CPU and the memory, the von Neumann architecture is constrained by a physical separation 

between the CPUs and the memory, as illustrated in Figure 1(b). These separations require an 

inexorable back and forth transfer of data within the parallel bus; high data rates along the bus 

ultimately become too costly in terms of power consumption and hence become economically 

infeasible.  
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Figure 1: Comparison between brain computing architecture with von Neumann computing 
architecture. 

On the contrary, the human brain employs the fundamental different computing schemes from 

the computing/memory unit level to the architecture level. Additionally, the information captured 

from the surrounding world is encoded in a spiking signals format in the brain [2], which is 

illustrated in Figure 1(c). At the architecture and device levels, the computing unit (neuron) and 

the memory unit (synapses) in a mammalian nervous system are placed adjacent to each other 

distributedly forming a network configuration, which is illustrated in Figure 1(a). Figure 1(c) depicts 

a spiking sequence that is an information representative form in the mammalian nervous system. 

Moreover, the main frequency of these spiking signals is usually low (~kHz). The low signal 

frequency and the network-based architecture with a small distance between the computing unit 

and the memory unit make the mammalian nervous system to be the most power efficient and 

fast computing machine in the world. Additionally, the power consumption of a human brain 

averages only about 20 Watts, which is significantly lower than the power consumption of any 

current computing system.  

In order to enable the conventional computers to have similar computing efficiency and power 

consumption. Neuromorphic computing was proposed by Dr. Carver Mead [3] with the concept of 

physically rebuilding the human brain nervous system through very-large-scale integration 

systems (VLSI). Recently, this concept has been extended to use other emerging technologies 

like memristor, Magnetic tunnel junction, carbon nanotube FETs, etc.  

Although, the fundamental functions of a mammalian nervous system are still under 

investigation, the two main elements: neuron and synapse are well studied at the cellular level.  
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Figure 2: Neuron networks: (a) brain; (b) neural network (c) neuron connecting structure (d) 
neuron structure (e) neuron network  architecture 

The structure of a neuron is shown in Figure 2 (c) and (d). There are four main parts in each 

neuron:  

 Dendrite: receives spiking signals from other neurons; 

 Soma (neuron body): generates/sends spiking signals to the axon under the condition of the 

integration of received spiking signal levels from the dendrites exceeds the specific threshold 

voltage; 

 Axon: propagates spiking signals generated by soma to other neurons, and connects to other 

neurons through synapses; 

 Synapse: acts as a memory organ in the brain. It connects axon of the last neuron to the 

dendrite of next neuron. The connectivity strength can be modified by spiking signal stimulus.  

As illustrated in Figure 2 (d), a neuron has a capability of receiving a multitude of input signals 

through dendrites simultaneously and integrating them into a membrane potential. Once the 

membrane potential exceeds a specific liminal value (i.e. the threshold voltage), the neuron 

generates a spiking signal sequence that propagates along the axon. Through the axon, firing 

signals are sent to the thousands of subsequent neurons. This unique connecting structure fold 

and signal processing method permits each neuron to receive and process thousands of signals 

simultaneously. In a mammalian brain, the degree of connectivity for a single neuron is at the ten-

thousand-fold level; any discrete neuron can concurrently receive/send signals from/to more than 

10,000 other neurons. Based on the deep understanding of neuron functions, several neuron 

models listed in Table 1 have been developed in the past century. 
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Table 1: State-of-the-art Neuron Models 

Neuronal Mode  Year Reference 

Integrate and Fire 1907 [4] 

Hodgkin-Huxley 1952 [5] 

Leaky integrate-and-fire 1965 [6] 

 

A synapse acting as a memory organ connects neurons in a mammalian nervous system. The 

connecting strength can be modified in two directions (strengthen or weaken) by both excitatory 

and inhibitory stimuli. This phenomenon is called as the plasticity of a synapse. The relationship 

between the plasticity of synapse and the memory is revealed by Dr. Kandel’s research on 

Aplysia. In the experiments, the stimulus was repeatedly applied to the Aplysia’s sensory neurons 

as shown in Figure 3. When the constant stimulus was repeatedly applied to the sensory neuron 

(1, 2, 5, 10, 15), the response signal magnitude of the motor neuron reduces gradually, indicating 

that the strength of the connection between sensory neuron and response neuron (motor neuron) 

becomes weak. This phenomenon is identified as the memory mechanism at the cellular level.  

 

 

Figure 3: A sample of five identical action potentials number 1, 2, 5, 10, and 15 along with the 
corresponding motor response signals of diminishing strength recorded at the motor neuron 

(identified by L7G) (top)[7]. 

 

In order to build a neuromorphic computing system,  the scientists initially attempted to simulate 

the brain’s network structure with traditional computers or servers [8]. However, these projects 

suffer the inherent limitations of the von Neumann architecture-based computer; i.e. the high 

power consumption and the slow response time due to the inordinately high data transfer rate 

between CPUs and memories, especially whenever attempting to simulate any extremely large 

neural network that reaches the human brain level.  

After a realization of the malefic traits posed by traditional digital computers, technologists 

sought out a novel, but natural hardware implementation and architecture: a network formed by 

analog neurons and synapses. These novel hardware platforms which intend neuromorphic 
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computing are called neuromorphic chips. Table 2 summarizes the contemporary state-of-the-art 

fabricated “analog” and “digital” neuromorphic chips with the comparison to human brain on 

critical parameters.  

Table 2: The state-of-the-art neuromorphic chips 

 TrueNorth [9, 
10] 

ROLLs[10, 11] Neurogrid[10, 
12] 

HICANN Chip/ 
BrainScaleS[10] 

SpiNNaker[10, 
13, 14] 

Human 
Brain[10, 

15] 

Neurons 1,048,576 256 65,535 511 20,833  20 
Billions 

Synapses 256 millions 128,000 N/A 113,636 20,833,333 200 
Trillions 

Area/volume 430 mm2 51.4 mm2 168 mm2 50 mm2 102 mm2 1130 cm3 

Neuron 
Density 

2438.55 

per mm2 
5 mm2 390 per  mm2 10 per  mm2 204 per mm2 17,699 

per  mm3 

Synapses 
Density  

0.595 million 

per mm2 

2490 

 

N/A 2272 per  mm2 204,248 

per mm2 

177 
million 

per  mm3 

Ratio of 
synapses to 

neurons 

244 500 N/A 222 1,000 10,000 

Power density 0.15 mW/ mm2 0.078 

mW/ mm2 
18 mW/ mm2 57 mW/ mm2 0.012 mW/ mm2 0.0177 

mW/ mm3 

2.2 Memristor as Synapse 

The plasticity of a synapse can be implemented as a nanoscale non-volatile device 

“Memristor”, also called as resistive RAM (RRAM), since voltage/current pulses can alter its 

resistance/conductivity reversibly [16, 17]. A typical memristor is formed as a metal-insulator-

metal (MIM) structure, as illustrated in Figure 4(a). The metals form the top and bottom contacts 

and the insulator is usually a resistive switching material [18, 19]. When the voltage/current 

stimulus is applied on its two terminals, the resistance of switching material would gradually 

change between its low resistance state (LRS) and high resistance state (HRS). The decrease in 

resistance of the switching material is due to the formation of the conductive filament (CF) marked 

as red lines in Figure 4 (a). The real TEM (Transmission electron microscopy) images are 

illustrated in Figure 4(b). The phenomenon is called a soft breakdown in material science. This 

breakdown of the switching material can be recovered by applying a reversed stimulus at the 

terminals, which consequently resets the memristor to its high resistance state as shown in Figure 

5.  
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Figure 4: Illustration of the switching mechanism of a memristor: (a) switching process (b) the 
TEM images of the dynamic evolution of conductive filaments [10] 

 

Figure 5: Schematic of MIM structure for metal–oxide RRAM, and schematic of metal–oxide 
memory’s I–V curves, showing two modes of operation: (b) unipolar and (c) bipolar [20] 

 

3 Memristive Three-dimensional Neuromorphic Computing System 

To our best knowledge, the recent fabricated neuromorphic chips implement neurons and 

synapses using traditional two-dimensional CMOS and memory technology. In 2D placement 

methodology, a longer signal delivery distance is generally expected due to the routing density 

increases linearly with the number of the connections, which inevitably increases die area, power 

consumption [9, 21], and consequently diminishes the benefits offered by neuromorphic 

computing [22, 23]. Moreover, the conventional SRAM memory technology, which is used to 

implement synapse [9], needs extra static power for holding the stored value, which further 

augments consumption.  

For the purpose of overcoming the limitations imposed by the state-of-the-art neuromorphic 

chip designs, I propose a novel 3D neuromorphic architecture utilizing three-dimensional 

integrated circuit (3D-IC) technology  [24] to extend neuromorphic chips into the third dimension 

which is illustrated in Figure 6. Applying 3D integration technology to neuromorphic chips permits 

vertical routing paths of reduced nanoscale dimension, subsequently diminishing critical path 

lengths. It also decreases power consumption, and shrinks die areas with high-complexity, high-

connectivity, and massively parallel signal processing capability.  
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Figure 6: Evolution of neuromorphic IC architecture: from planar 2D to vertical 3D. (a) Neuron 
Network; (b) 2D Neuromorphic IC Architecture; (c) 3D Neuromorphic IC Architecture (d) 3D 

Neuromorphic IC Architecture Diagram: Stacking synaptic arrays and neuronal arrays vertically. 

The benefits of applying 3D integration technology to neuromorphic chips design can be 

summarized as:  

 Address the 2D neuron routing congestion problem, thereby increasing 

interconnectivity and scalability of the NC network and reducing the critical-path 

lengths; 

 Allow numerous 3D interconnections between hardware layers that offer high device 

interconnection density, low power density, and broad channel bandwidth using fast 

and energy-efficient links; 

 Provide a high-complexity, high-connectivity, and massively parallel-processing 

circuital system that can accommodate highly demanding computational tasks. 

First, I am planning to extend the memristor-based synapse to the third dimension. In general, 

there are two types of three-dimensional (3D) RRAM (memristor) structures that can be used as 

3D synaptic arrays: Horizontal RRAM (H-RRAM) and Vertical RRAM (V-RRAM), as shown in 

Figure 7.  

 

Figure 7: 3D RRAM Integration Structure: (a) Horizontal Structure (b) Vertical Structure  
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In both structures, the device sizes can be 4F2 n⁄ , where n is the number of the stacked layers 

and F is the minimal lithographic feather size dictated by technology node. The number of critical 

lithography masks for H-RRAM structure increases linearly with increasing the number of the 

stacked layers while the number of masks for V-RRAM is relatively independent of the stacking 

number. With increasing the number of the stacked layers, V-RRAM becomes, even more, cost 

effective[25] as shown in Figure 8. 

 

 

Figure 8: Cost breakdown for per bit projections 

 

Next, there are two 3D integration technologies that can be used for integrating other transistor-

based neurons and supportive circuitry to the 3D memristor-based synapse array.  One is more 

traditional, mature and more close to commercialization level: TSV based 3D integration 

technology[24, 26]. The second one is a more emerging monolithic 3D technology that 

sequentially fabricates the transistors in a single wafer at the low process temperature. Figure 9 

depicts the diagram of these two 3D integration technologies.  

 

Figure 9: The TSV-based 3D-IC and Monolithic 3D-IC[27] 

The main difference between two three-dimensional technologies is the bonding method. For 

TSV-based 3D technology, the circuitry is fabricated separately at different wafers individually 

with traditional CMOS technology. After that, the fabricated wafers would be stacked and bonded 

together through TSVs serving as vertical electrical connections. For the TSV-based 3D 
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integration technology, power delivery is one of the challenges. As multiple dies are stacked 

together with small footprints, delivering current to all circuitry located at different vertical layers 

while meeting the power noise and thermal constraints become more and more challenging. This 

is mainly caused by the number of TSVs available for power distribution networks is limited.   

 

Table 3: The emerging transistors with low fabrication temperature[28] 

3D Device FinFET Epi-like Si 

NWFET 

Epi-like Si 

UTB 

SOI-Si UTB Poly-Si/Ge 

FinFET 

IGZO OSFET 

Thermal 

budget ℃ 

< 400 < 400 < 400 < 650 < 400 < 500 

I_on/I_off >107 >5 × 105 >5 × 105 >107 >107 >1021 

 

Figure 10: a 3D chip with RRAM, CNFET logics fabricated by Stanford [29].  

 

  Another emerging 3D integration technology so-called monolithic 3D integration technology. 

Unlike the TSV-based 3D technology uses separately fabricate processes, the monolithic 3D 

technology integrates different layers of devices at a single wafer sequentially with nanoscale 

inter-tier vias serving as vertical connections. The main challenge for the monolithic 3D integration 

technology is the low temperature fabrication constraint for the upper layers. In order to protect 

the former fabricated devices in lower layers, the higher layers need to be fabricated at a lower 

temperature. This low temperature requirement restricts the traditional CMOS transistor 

( fabricates at more than 1000℃) does not fit the requirements for the upper layer circuitry 

implementation. Fortunately, several low temperature transistors are potential candidates to fit 

this requirement, such as FinFETs [28], Carbon nanotube FETs [30, 31], etc. Table 3 summarizes 

the state-of-the-art transistors that are fabricated at low temperature and potentially can be 
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employed in the monolithic 3D integration technology[28].  Furthermore, the 

functional chip combing monolithic 3D integration technology, memristor, and CNTFETs has 

been fabricated recently by Stanford, which is demonstrated in Figure 10 [29].  

In future, I would mainly focus on integrating the memristor array with the monolithic 3D 

integration technology with low temperature transistors (CNTFETs). Figure 11 demonstrates the 

modeling and design framework. I will first use the SPICE (Simulation Program with Integrated 

Circuit Emphasis) model of the memristor and CNTFETs SPICE model to build an integrate and 

fire neuron model in a three-dimensional structure. Through these SPICE models, the analysis 

on noise, computing efficiency, and the device variations would be performed. At last, the 

modeling and simulations on system levels for real neuromorphic computing applications would 

be demonstrated.  

 

Figure 11: Modeling and Simulation Framework 

 

4 The List of the Publications  

In my Ph. D. period, my research mainly focuses on the three-dimensional memristive 

neuromorphic computing and the emerging biological learning schemes. So far, there are three 

journal articles and nine conference papers have been published [32-43].   

Ref [33, 38] introduce the state-of-the-art three-dimensional memristive neuromorphic 

computing hardware research trends and challenges. Ref [32, 34, 35, 44, 45] mainly discuss the 

three-dimensional memristive neuromorphic architecture electrical characteristics at large-scale. 

The simulations results are obtained by the SPICE models of memristor and the neurons. The 

signal integrity and signal attenuation issues for a large-scale memristive electronic synaptic array 

is analyzed and discussed. Ref [36] mainly introduces a novel neuromorphic computing 

application on the cloud robotics. Furthermore, Ref [37] analyzes a biologically learning schemes 
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named as associative memory at the cellular level. Ref [40, 41] explore the TSV-based 3D 

neuromorphic computing architecture, which implements the capacitance form by the TSVs as 

the capacitor in a neuron model. Ref [42, 43] mainly investigate several hardware 

implementations and designs on the temporal encoding based neurons. Ref [39] discusses a 3D 

memristive-based adjustable deep recurrent neural network topology with a programmable 

attention mechanism.  
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