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• High Power and frequency Challenges

Physical Challenges of Traditional Von 

Neumann Computer
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P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, et al., "A million spiking-neuron integrated circuit with a scalable communication network and interface,"
Science, vol. 345, pp. 668-673, 2014.
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• Transistor size shrinking challenges at 10 nm scale in 

following several years (ITRS)



Intelligent Challenges of Traditional Von 

Neumann Computer

4

• High Adaptivity with dynamic surrounding 

environment 

• Spontaneous and independent Learning

• Perception

• Cognition 

• High Adaptivity with dynamic surrounding environment 

• Spontaneous and independent Learning

• Perception

• Cognition 

• Low power consumption (~ 20W)

• High computing efficiency; 
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Brain VS. Computer
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Neuromorphic Computing
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Neuromorphic Computing
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Functionalities of Neurons and Synapses
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• Dendrite: receives spiking signals from other neurons

• Soma: (neuron body): generates/sends spiking signals to axon on the condition of the integration of

received spiking signals levels from dendrites exceeds a specific threshold

• Axon: propagates spiking signals generated by soma to other neurons. It connects to other neurons

though synapses.

• Synapse: acts as a memory organ in brain. It connects axon of last neuron to dendrite of next neuron. The

connectivity strength can be modified by spiking signal stimulus.

(a) Brain (b) Neural network

(c) Neuron structure



Spiking Signals
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http://www.izhikevich.org/

This historic tracing is the first published intracellular

recording of an action potential. It was recorded in by

Hodgkin and Huxley (captured through a probe attached on

the axon)

mV

 Rate coding

 The rate coding model of neuronal firing communication
states that as the intensity of a stimulus increases,
the frequency or rate of action potentials, or "spike firing",
increases;

 Spike-count coding

 The information is encoded by the number of spikes that 
appear during a time period



Synapse & Memory
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Synapse: acts as a memory organ in brain. It connects axon of last

neuron to dendrite of next neuron. The connectivity strength can be

modified by spiking signal stimulus. The connectivity strength of

synapse is defined as weight of synapse.

E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. Hudspeth, Principles of neural science 

vol. 4: McGraw-hill New York, 2000.

Sea Slug

Dr. Eric Kandel was awarded the Nobel Prize in medicine and physiology in 2000 
for uncovering the molecular basis of memory.



Neural Network Topologies
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Neurons
Synapses

Deep Neural Networks
Recurrent Neural Networks 

Time Lag 𝜏

Reservoir Networks 

Reservoir Output LayerInput Layer



Neuromorphic Platforms and Chips
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Memristor(2008)

TrueNorth [1] Neurogrid [2] SpiNNaker [3] Human Brain

Neurons 1,048,576 65,535 20,833 20 Billions

Synapses 256 millions N/A 20,833,333 200 Trillions

Area/Volume 430 𝐦𝐦𝟐 168 𝐦𝐦𝟐 102 𝐦𝐦𝟐 1130 𝐜𝐦𝟑

Power Density 0.15 mW/𝐦𝐦𝟐 18 mW/𝐦𝐦𝟐 0.012 mW/𝐦𝐦𝟐 0.0177 mW/𝐦𝐦𝟑

Soman, Sumit, and Manan Suri. "Recent trends in neuromorphic engineering." Big Data Analytics 1, no. 1 (2016): 15.

Neuromorphic Computing Carver 
Mead 1980s

TPU



Limits of State-of-art Brain-inspired Chips
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• 2D flat routing/placement method
• Large size CMOS based synapse design (RAM)

• Long signal propagation distance leads large 
power consumption on signal delivery

• Large chip design area

Nearest Neighbor 
Comm

TrueNorth Spiking Signal Propagation Scheme [1]

On-chip Comm

On board Comm

Power consumption increases with event number and signal 
propagation distance  [4]



Memristive Three-dimensional 

Neuromorphic Computing System
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Memristor
3D Integration 

Technology

• Objectives
• Reduce the signal transfer distance, consequently decrease the power consumption;
• Reduce the die area by stacking the neuron and synapse circuitries vertically; 
• Memristors can reduce the size of synapse to nanoscale;
• Reduce the wire length; 
• Increase the interconnection density;



Memristor as Synapse
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TEM image: J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, S.-J. Lin, et al., "Dynamic evolution of conducting nanofilament in 
resistive switching memories," Nano letters, vol. 13, pp. 3671-3677, 2013. 



3D Memristor-based Synapse
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Memristor Crossbar Structure

Horizontal RRAM (Resistive RAM) Structure

Vertical electrodesNanowireRRAM Cell

Si Substrate

Vertical Horizontal RRAM (Resistive RAM) Structure (Side View)

SRAM DRAM NOR NAND RRAM

Cell area >100F2 6F2 10F2 <4F2 (3D) 4F2

Voltage <1V <1V >10V >10V <3V

Write

Energy(J/bi

t)

~Fj ~10fJ ~100 pJ ~ 10 fJ ~0.1 pJ

Comparison between RRAM with other Memory Technology [5]



3D Integration Technologies
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Silicon Wafer

Silicon Wafer

TSV

TSV based 3D-IC Integration:

• Dies fabricated separately;

• Wafer thinned;

• Wafer aligned and bonded;

monolithic 
inter-tier vias (MIVs)

Fabricate in 
a single wafer

Monolithic 3D integration technology:

• fabricates two or more tiers of devices sequentially;

• No aligning and bonding procedure;

• No wafer thinning procedure;

• Monolithic inter-tier vias (MIVs) are at nanoscale level;

• Fabrication compatible with RRAM (Resistive RAM) array;



Challenges for Monolithic 3D Integration

17

monolithic 
inter-tier vias (MIVs)

Fabricate in 
a single wafer

Low temperature
fabrication technology
for the upper layers

Devices FinFET Epi-like Si 

NWFET

Epi-like Si UTB SOI-Si UTB Poly-Si/Ge 

FinFET

IGZO OSFET

Thermal 

budget (℃)

< 400 < 400 < 400 < 650 < 400 < 500

I_on/I_off >107 >5 × 105 >5 × 105 >107 >107 >1021

Table 3: The emerging transistors with low fabrication temperature [8]

IGZO: In-GA-Zn-O; 

OSFET: Oxide semiconductor FET; 

NWFET: Gate first nanowire FET;

UTB:  ultra thin body; 

SOI: Silicon on insulator;



CNFETs + Monolithic 3D Integration
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Memristor 

SPICE Model

Stanford Carbon 

Nanotube FETs 

SPICE Model



Comparison between 2D to 3D Monolithic Integration
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0%

20%

40%

60%

80%

100%

wirelength power consumption die area

2D Monolithic 3D

21-33% 14-32% 33-35%

Comparison between 2D to 3D Monolithic Integration on wirelength, power consumption and die area [6,7]. (45nm 
technology; Benchmarks: FPU;AES;DES; LDPC; M256)

FPU: a double precision floating point unit. 
AES & DES: encryption engines. 
LDPC: a low-density parity-check engine for the IEEE 802.3 standard. 
M256: a simple partial-sum-add-based 256bit integer multiplier. 



Methodologies
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Analysis
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Expected Outputs

 3D circuit level SPICE model of memristor-based synapse (V-RRAM);

 The neuron circuit design by using traditional CMOS technology and carbon 

Nanotube FETs;

 The supportive circuit design by using traditional CMOS technology and 

emerging carbon Nanotube FETs;

 The system level simulation and analysis on the power consumption, computing 

efficiency, and design area reduction, etc. 
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Thank you!
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