
492 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Performance Improvement of Geographically
Distributed Cosimulation by Hierarchically Grouped

Messages
Sungjoo Yoo, Kiyoung Choi, and Dong Sam Ha, Senior Member, IEEE

Abstract—To improve the performance of geographically dis-
tributed cosimulation, we propose a concept called hierarchically
grouped message. The concept improves cosimulation perfor-
mance, preserving the cosimulation accuracy, by hierarchically
grouping messages transferred between simulators in a short
period of simulated time into a single physical message, thereby
reducing the number of physical messages. Applying the concept
to hybrid and optimistic cosimulation, we can reduce the number
of rollbacks as well as the communication overhead accompanying
the message transfer. Experimental results show the efficiency of
the proposed method for practical examples in an internationally
distributed cosimulation environment.

Index Terms—Geographically distributed cosimulation, hard-
ware/software cosimulation, optimistic simulation, performance,
rollback, simulation.

I. INTRODUCTION

RECENTLY, a new cosimulation concept calledgeographi-
cally distributed cosimulationhas been drawing more and

more attention in connection with intellectual property (IP)-
based design using the Internet [2], [3] or globally distributed
design [4], [5]. In such cosimulation environments, designers
can simulate a system that consists of remotely located IP blocks
without requiring local copies of the IP blocks or subsystem de-
signs that are being developed by their colleagues across con-
tinents. IP providers and electronic design automation vendors
also gain the benefits of allowing their IP blocks and propri-
etary tools (e.g., high-performance hardware emulators) to be
accessed remotely while protecting their IP rights and tool li-
censes.

A. Performance Issue in Geographically Distributed
Cosimulation

In applying geographically distributed cosimulation to such
Internet-based design environments, we face a significant
problem in terms of cosimulation performance: high commu-
nication overhead over the Internet. To make geographically

Manuscript received August 13, 2000. This work was supported by ETRI,
Korea. A preliminary version of this work was presented as a regular paper in
Proc. Int. Workshop on Hardware-Software Codesign,May 1999, pp. 100–104.
This work was supported in part by ETRI, Korea.

S. Yoo is with SLS Group, TIMA/INPG, Grenoble 38031, France, on leave
from Seoul National University, Seoul 151–742 Korea

K. Choi and D. S. Ha are with Seoul National University, Seoul 151–742
Korea.

Publisher Item Identifier S 1063-8210(00)09506-8.

distributed cosimulation practically useful, efficient perfor-
mance optimization methods should be developed that reduce
the high communication overhead. Since this communication
overhead is caused by the transfer of messages between simu-
lators, reducing the number of messages transferred between
simulators is crucial.

There are two types of messages transferred among sim-
ulators involved in geographically distributed cosimulation:
event-carrying messages and null messages.1 In cosimulation
of communication-intensive systems such as H.263 or wireless
code division multiple access (CDMA) systems, the communi-
cation overhead of transferring event-carrying messages over
the Internet can dominate cosimulation run-times. Since hard-
ware (HW) and software (SW) simulators should synchronize
with each other (via slow communication over the Internet) at
every system clock tick to detect the occurrence of interrupt,
the communication overhead of transferring null messages
over the Internet can be prohibitively large, especially when
interrupt is used as one of communication protocols in the
system being designed.

Thus, the performance optimization methods of geographi-
cally distributed cosimulation should reduce both numbers of
event-carrying messages and null messages simultaneously.

B. Previous Work

Distributed cosimulation has been extensively researched
[6]–[8]. However, since geographically distributed cosimu-
lation is a relatively new area, little research has been aimed
at improving the performance of geographically distributed
cosimulation.

As an effective method of improving the performance of ge-
ographically distributed cosimulation, a concept calledselec-
tive focus[9]–[11], [2] has been proposed. It allows designers
to change the abstraction levels of communication models dy-
namically during cosimulation. Thus, the designers can trade off
between cosimulation performance and accuracy.

In [3], a geographically distributed simulation of IP-based de-
signs calledvirtual simulationis presented. In the work, to im-
prove the simulation performance, a group of simulation inputs
(called patterns) to an IP block are buffered and then sent to
a remotely located host, which then estimates the power con-
sumption of the IP block in a batch process manner.

1Null messages are used for simulator synchronization only; i.e., to notify the
local time of the message sending simulator.

1063–8210/00$10.00 © 2000 IEEE

YOO et al.: GEOGRAPHICALLY DISTRIBUTED COSIMULATION 493

Hybrid cosimulationproposed in [12] and [13] reduces the
number of null messages in distributed cosimulation environ-
ments where optimistic simulators and conservative simulators2

coexist. Since optimistic simulation has an advantage in such a
case that synchronization overhead is dominant [14],optimistic
cosimulation[15] can reduce the communication overhead by
reducing the number of null messages. For the reduction of
optimistic simulation overhead such as state-saving overhead,
thread-based state-saving methods have been proposed in [15].

In the societies of distributed simulation and parallel pro-
gramming, there have been a few studies on improving sim-
ulation performance throughmessage aggregation. In [16], to
reduce the communication overhead of transferring messages,
transformation techniques such as loop unrolling are applied to
parallel programs to aggregate messages into a less number of
physical messages. In [17], to reduce rollbacks caused by fre-
quent exchanges of messages between optimistic simulators,
message aggregation is performed on anaggregation window
basis. Messages that occur inside the window (which slides on
simulated time) are aggregated into a physical message.

C. Contribution of the Paper

In this paper, to reduce the number of event-carrying mes-
sages, we present a new concept calledhierarchically grouped
message(HGM). Basically, the HGM concept utilizes the fact
that transmitting one large message is faster than transmitting
multiple small-sized messages one by one. Correspondingly,
the communication overhead over the Internet does not strictly
depend on the sizes of messages being transferred, but rather
strongly depends on the number of physical messages trans-
ferred.

The HGM concept proposed in this paper differs from the
message aggregationconcept in the following aspects. In [17],
the aggregation window is set to an interval of simulated time ig-
noring the semantics of messages. By contrast, in the HGM con-
cept, the designer or an automated tool specifies HGMs using
the semantics of messages—higher level information on mes-
sages transferred between SW and HW simulators—thereby ob-
taining more efficient cosimulation. In addition, the HGM con-
cept is applied to hybrid cosimulation where conservative sim-
ulators and optimistic simulators coexist and considers cosimu-
lation-specific characteristics such as handling interrupt.

Previous approaches on geographically distributed cosim-
ulation present limitations. Some of these limitations require
the designer to trade off between simulation accuracy and
performance [9]–[11], [2]; other limitations prevent optimiza-
tion methods from being applied to timed cosimulation [3].
Compared to the previous approaches, the proposed HGM
concept has the advantage of improving the performance of
geographically distributed timed cosimulation while preserving
the timing accuracy. Furthermore, by integrating the HGM
concept with hybrid and optimistic cosimulation, we can further
improve the performance of geographically distributed timed
cosimulation by reducing both the number of null messages as
well as that of event-carrying messages.

2In this paper, we call a simulator that does not perform optimistic simulation
a conservativesimulator.

D. Organization of this Paper

This paper is organized as follows. In Section II, we give pre-
liminaries, including terminology and basic assumptions used
throughout this paper. In Section III, we describe the message
grouping concept in hybrid and optimistic cosimulation. In Sec-
tion IV, we address the issues of managing the HGM in hybrid
and optimistic cosimulation. We give experimental results in
Section V and conclude this paper in Section VI.

II. PRELIMINARIES

In this section, we explain the terminology, assumptions, and
the concepts of hybrid and optimistic cosimulation used in this
paper.

A. Terminology

1) Message:A timestamped event. In this paper, if there is
no confusion between null messages and event-carrying
messages, we use the termmessagesto denote event-car-
rying messages.

2) Optimistic/conservative simulators:Optimistic simula-
tors can perform rollback while conservative simulators
cannot.

3) Local virtual time (LVT) and global virtual time (GVT):
Each simulator has its own local time, called local virtual
time. Global virtual time is the minimum of timestamps of
in-transit messages3 and local virtual times of simulators.

4) Straggler message:A message that has a timestamp ear-
lier than the LVT of the receiving simulator.

5) Rollback:When an optimistic simulator receives a strag-
gler message, it rolls back; that is, it restores a state whose
timestamp is not later than the timestamp of the straggler
message.

6) Antimessage:After rollback, to cancel a previously sent
output message that has a timestamp later than the LVT,
the simulator sends an antimessage to the simulator that
received the message to be canceled.

7) Aggressive/lazy cancellation policies:In the aggressive
cancellation policy, the simulator sends antimessages just
after rollback. In the lazy cancellation policy, the sim-
ulator defers sending antimessages until its LVT again
reaches the timestamp of the output message to be can-
celed. Then, after comparing the contents of the previ-
ously sent output message with those of a new output mes-
sage to be sent at that time, it determines whether or not
to send the antimessage.

B. Assumptions

Fig. 1 shows an example of communication interface between
SW and HW from [18]. The dashed boxes enclosing the SW
and HW parts denote corresponding simulators. The SW and
HW simulators exchange messages carrying events across the

3In-transit messages are messages that are in the communication channels
among simulators, or not processed yet in input message queues. In our im-
plementation, the Internet communication channel works as a first-in first-out
queue.

494 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 1. An example of communication interface between SW and HW.

Fig. 2. Hybrid cosimulation reduces synchronization overhead caused by null messages.

boundary between the SW and the HW through the address/data
buses, control pins such as wr_b and rd_b, and the interrupt
pin.4 To simplify explanation, in this paper, we assume that
data transfer between SW and HW is performed using memory-
mapped I/O and interrupts. However, the HGM concept can be
easily extended to the cases in which other types of HW-SW
communication such as port-mapped I/O are used. For sim-
plicity’s sake, only a few number of communication signals are
considered, as shown in Fig. 1. We also assume that the cosim-
ulation is performed with two processes: one for the SW sim-
ulator and the other for the HW simulator, as shown in Fig. 1.
The concept can be also applied to cosimulation with multiple
processes [13].

C. Hybrid and Optimistic Cosimulation

In this section, we briefly describe hybrid cosimulation and
optimistic cosimulation.

1) Hybrid Cosimulation: To explain hybrid cosimulation,
we first introduce lock-step cosimulation. Fig. 2(a) shows an
example of lock-step cosimulation. In lock-step cosimulation,
simulators advance their local times by one system clock period
in a lock-step manner and synchronize with each other at every

4In our experiments, a single message consists of timestamp, source/destina-
tion simulator ID’s, message ID, message type, address/data bus values, control
pin values, interrupt pin values, etc.

system clock tick exchanging (null) messages to detect the
occurrence of events (e.g., interrupt) to be exchanged. In the
figure, white rectangles and the numbers on them represent
simulation workloads and the corresponding local times in the
simulators, respectively. Shaded rectangles representsimulator
synchronization overheadin terms of runtime, which is caused
by the transfer of null messages and event-carrying messages.
Dashed arrows between simulators represent null messages,
while solid arrows represent event-carrying messages. As
shown in Fig. 2(a), in lock-step cosimulation, synchronization
overhead can dominate total cosimulation runtime.

To reduce such overhead, we perform hybrid cosimulation.
In hybrid cosimulation, optimistic and conservative simulators
are involved. Fig. 2(b) shows an example of hybrid cosimulation
scenario. Assume that the solid arrow in this figure represents
a message carrying an interrupt event from HW to SW. We as-
sume that the SW simulator performs optimistic simulation and
the HW simulator does not. First, the optimistic simulator runs
its simulation for an adaptively controlled time window ,
saving its states at checkpoints (at timein this example) in
preparation for a potential rollback. It stops the simulation at
time W and sends a null message (the dashed arrow in the
figure) to the conservative simulator (HW simulator). Then the
optimistic simulator waits for a message to come from the con-
servative simulator.

YOO et al.: GEOGRAPHICALLY DISTRIBUTED COSIMULATION 495

Fig. 3. An example of message communication: an H.263 decoder system.

After receiving a message from the optimistic simulator, the
conservative simulator starts to run until the time point W
where the optimistic simulation has stopped. The conservative
simulation may stop earlier at time, W as shown
in the figure, if the conservative simulator comes to send an
event-carrying message (in this example, an interrupt event) to
the optimistic simulator at that time. In this case, since the time-
stamp of the message sent to the optimistic simulator (time)
is earlier than the time point where the optimistic simulator has
stopped (time W), the optimistic simulator rolls back to the
checkpoint at time , which is not later than the timestamp of
the straggler message (time). However, if there is no event to
be transferred from the conservative simulator to the optimistic
simulator, then the conservative simulator stops at the time point
where the optimistic simulator has stopped (time W) and
sends a null message to the optimistic simulator.

After updating the size of W , the optimistic simulator
starts to run until the new window elapses. The cosimulation
continues running in this way. Note that in hybrid cosimulation
a simulator stops its simulation when it sends a message to
another simulator or after the time window W elapses. For
more details of hybrid cosimulation, refer to [12] and [13].

2) Optimistic Cosimulation:When the simulators involved
in the cosimulation are all optimistic simulators, we perform
optimistic cosimulation. Each optimistic simulator has its own
LVT and manages its state queue and input/output message
queues. Each optimistic simulator works as follows. It looks
up the input message queue to find an input message having a
timestamp equal to LVT, processes the message (if any), and
advances its LVT. If there is any straggler input message, then
the optimistic simulator rolls back its LVT according to the
timestamp of the straggler message.

To constrain the memory usage for state saving in the simula-
tion host, GVT is calculated. States and messages having times-
tamps earlier than GVT can be removed from the state queue
and the input/output message queues.5 For the details of opti-
mistic cosimulation, refer to [15].

Even when there are conservative simulators involved in the
cosimulation, if there is also more than one optimistic simulator
involved, we can still apply the optimistic cosimulation concept
to the coordination among the optimistic simulators. However,
we apply the hybrid cosimulation concept to the coordination
between optimistic simulators and conservative simulators [13].

5If there is no state stored at GVT, the state having the latest timestamp (but
earlier than GVT) is kept in the state queue.

III. M ESSAGEGROUPING IN HYBRID AND OPTIMISTIC

COSIMULATION

Fig. 3 shows an example of message transfer between the SW
and HW simulators in the cosimulation of an H.263 decoder
system [19]. We assume that SW writes 64 data words to the
HW, which implements the inverse discrete cosine transforma-
tion (IDCT) function. On the completion of IDCT, an interrupt
is sent to the SW to signal the completion. The execution time of
the IDCT function is not assumed to be fixed (the minimum and
maximum bounds may be given). After receiving the interrupt,
the SW reads 64 data words from the HW as a result of the IDCT
function. In the processor where the SW runs, the write and read
operation can be performed by executing memory store and load
instructions (e.g., STR, STM, LDR, and LDM instructions in an
ARM7 processor [20]). To write each of the data words, the SW
sends the address value and data value to the HW; for example,
in Fig. 4(a),address(0) anddata(0) . To receive each of
the data words, after the SW sends the address value to the HW,
the HW sends the data word corresponding to the received ad-
dress value to the SW.

A. Message Grouping in Hybrid Cosimulation

In this section, we assume that the SW simulator performs
optimistic simulation and the HW simulator does not. For the
output message cancellation in optimistic simulation, we adopt
lazy cancellation policy. Fig. 4(a) shows a hybrid cosimulation
scenario where 64 data words are transferred from SW to HW.
Fig. 4(b) shows the case of data transfer from HW to SW. These
two cases correspond to the two dashed boxes in Fig. 3. In Fig.
4, numbers beside arrows represent the execution order in each
cosimulation scenario. In the figure, thick arrows represent the
execution of each simulator.

In Fig. 4(a), the optimistic simulator (SW simulator) runs first
(arrow numbered 1) and stops when it sends a message (con-
taining an address value, e.g.,address(0)) to the conservative
simulator (arrow numbered 2). After receiving the message, the
conservative simulator runs until the time point where the opti-
mistic simulator has stopped (arrow 3); it then sends a null mes-
sage (arrow 4) to notify the optimistic simulator that the con-
servative simulator has run up to the destined time point. If the
cosimulation scenario in Fig. 4(a) is performed in a geograph-
ically distributed cosimulation environment, the network com-
munication overhead caused by the large number of small-sized
messages6 can yield serious performance degradation.

6In our implementation, the size of a single ungrouped message is 44 bytes.

496 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 4. Grouping messages to transfer multiple data words.

Fig. 5. Hybrid cosimulation of the H.263 decoder system using groups of messages.

To resolve such a problem caused by the transfer of a large
number of small-sized messages, we can transfer multiple data
words at a time by grouping them as shown in Fig. 4(c). In this
example, we put 128 messages (64 messages for address values
and 64 messages for data values) transferred from SW to HW
into a group of message (thick arrow 2). In constructing a group
of messages during cosimulation, we do not raise the abstraction
levels of original messages or events, but keep them unchanged.
Thus, the timing accuracy of cosimulation can be maintained
after the grouping process. We simply delay sending messages
belonging to a group until all the messages belonging to the
group are ready to be sent. When the messages are ready, they
are grouped into a physical message and sent to the receiving
simulator (HW simulator). In Fig. 4(c), the group of messages
is represented by the thick arrow numbered 2 between the SW
and HW simulators. This figure illustrates that the concept of
message grouping can give significant reduction in the number
of physical messages.

Fig. 4(d) shows a hybrid cosimulation scenario using message
grouping for the case of Fig. 4(b). Since the SW reads 64
data words from the HW, the SW simulator sends to the HW
simulator a group of messages (thick arrow 2), which contain
64 messages for address values. The HW simulator sends a
group of messages (thick arrow 4) containing 64 messages
for data values. In Fig. 4(d), the group of messages (thick
arrow 4) sent by the HW simulator contains messages whose

timestamps are earlier than the LVT of the SW simulator.
Thus, the SW simulator should roll back. In Fig. 4(d), the
white arrow numbered 5 represents rollback in SW simulation.
Since we adopted lazy cancellation policy for output message
cancellation, after rollback the optimistic simulator does not
have to cancel the output messages already sent in the group
of messages (thick arrow 2).

In the case of the given example, result data items of IDCT
operation do not change the addresses (thick arrow 2) sent be-
fore. Thus, lazy cancellation prevents resending the messages
containing the addresses. In the case that the received data items
change the addresses and the optimistic SW simulator cancels
the previously sent output messages to send new messages con-
taining changed addresses (i.e., there iscircular dependency
among messages exchanged between two simulators), since the
new messages are straggler messages to the conservative sim-
ulator, causality error can occur on the side of the conserva-
tive simulator. Thus, in hybrid cosimulation, the HGM concept
should not be applied to the message group with circular depen-
dency among messages.

By applying the concept of message grouping to the example
in Fig. 3, we can reduce the number of physical messages as
shown in Fig. 5. Groupin the figure represents messages trans-
ferred from the SW simulator to the HW simulator while the SW
writes 64 data words to the HW. Groupand Group are trans-
ferred while the SW reads 64 data words from the HW.

YOO et al.: GEOGRAPHICALLY DISTRIBUTED COSIMULATION 497

Fig. 6. Reduction of rollbacks by grouping messages.

Fig. 7. An example of constructing an HGM.

B. Message Grouping in Optimistic Cosimulation

The concept of message grouping also has the advantage of
reducing the number of rollbacks in optimistic cosimulation.
Fig. 6 illustrates an example of message communication be-
tween SW and HW simulators in optimistic cosimulation, where
we assume that both SW and HW simulators perform optimistic
simulation. We also assume a case that the SW reads 64 data
words from the HW, which corresponds to the case in Fig. 4(b).

In memory load (or store) instructions that are performed for
the SW to read (write) 64 data words from (to) the HW, the time
gap between the event on the address bus [e.g.,address(0)]
and the associated event on the data bus [e.g.,data(0)] is
within a few clock cycles in the simulated time. However, due to
high communication overhead (e.g., at least a few milliseconds
per message transfer) in geographically distributed cosimulation
environments, when the data word requested by the SW arrives
at the SW simulator, the SW simulator (e.g., one that has mil-
lions of cycles/second performance on high-performance work-
stations) may have proceeded further into the future in the sim-
ulated time. Such a straggler message causes rollback in the
receiving optimistic simulator (in this example, the SW simu-
lator). The leftward arcs in Fig. 6 represent rollbacks caused by
such straggler messages.

As shown in Fig. 6(a), optimistic cosimulation suffers from
excessive rollbacks when the message transfer between simula-
tors is performed intensively in a short period of simulated time.
By grouping messages, we can reduce such excessive rollbacks
as shown in Fig. 6(b). In this example, we group 64 messages
transferred from the SW (HW) to the HW (SW) into a single
physical message Group(Group). Since only two physical
messages are transferred, in Fig. 6(b), rollback occurs only twice
in total.

Note that, basically, the concept of grouping messages is ap-
plicable since we are assuming optimistic simulation. While the
delay of message transfers can cause causality errors in the mes-
sage-sending simulator when the message-receiving simulator
sends straggler messages to the message-sending simulator, in
optimistic simulation, however, the causality errors can be re-
covered by the rollback mechanism.

IV. M ANAGEMENT OF HIERARCHICALLY GROUPEDMESSAGES

IN HYBRID AND OPTIMISTIC COSIMULATION

The grouping of messages is done hierarchically. Fig. 7 illus-
trates an example of constructing such a hierarchically grouped
message (HGM) when the SW writes 64 data words to the HW.
The addresses of the 64 data words are assumed to range from
0x80 to 0xbc .7 Each of the events on the address/data buses
or control signals such as wr_b generates a message transferred
between the SW and HW simulators. For the construction of an
HGM, first we build a subgroup with messages carrying events
on the address/data buses and control signals for transferring a
single data word as shown in Fig. 7. Then we group the sub-
groups into a single HGM. As such, higher level groups of mes-
sages are constructed by grouping lower level messages or sub-
groups in a hierarchical way.

A. Specification of HGM Based on Regular Expression

An HGM is specified manually by the designers or an auto-
mated tool.8 In cases where the data transfer between SW and

7The address values are assigned in the communication synthesis step before
timed cosimulation is performed.

8Currently, we are investigating the possibility of grouping messages auto-
matically so that the cosimulation performance is optimized.

498 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 8. Examples of sending partial HGMs.

HW is performed using memory mapped I/O, each HGM has a
sequence of address valuesassociated with it. Thus, we specify
the HGM based on the associated sequence of address values.

As a formal method to specify an HGM, we useregular
expression[21]. For example, in Fig. 7, the HGM transferring
64 data words has a sequence of address values ranging
from 0x80 to 0xbc . Thus, it can be specified by a regular
expression(0x80)(0x84)(0x88) (0xbc) . For another
example, we recall Fig. 1 and assume that the SW writes 64
data words to the HW using the same address value of0x80 .
The HW core reads the data words one by one from the same
memory location synchronous with the write operation. After
transferring the whole set of 64 data words, the SW sends a job
initiation signal calledgo whose address value is assumed to
be 0x84 to the HW to initiate the execution of the HW core.
In this case, the designer specifies the HGM using a regular
expression(0x80)64(0x84) .9

At the beginning of the construction of an HGM, there can
be multiple candidate regular expressions that partially match
the address sequence being monitored. The simulator finishes
constructing the HGM and sends it to the receiving simulator
when one of the candidate regular expressions yields a perfect
match with the address sequence. If it is found that no regular
expression yields a perfect match, then the simulator sends a
partial HGM. By a partial HGM, we mean a set of messages
that belong to an HGM and have been collected up to some time
point where the regular expression of the HGM is not satisfied
yet. In Section IV-C, the cases in which the partial HGM should
be sent will be described in detail.

B. Construction of HGM During Cosimulation

During cosimulation, each simulator monitors the values on
the address bus and starts to construct an HGM by detecting the
start address value (e.g.,0x80 in Fig. 7) of the regular expres-
sion of the HGM. During the construction of the HGM, output
messages are not sent to their receiving simulator. Instead, they
are stored in the output message queue. If the sequence of ad-
dress values satisfies the regular expression of the HGM (for
the example of Fig. 7, if the simulator detects the end address
0xbc), then the simulator creates a physical message with the
unsent messages in the output message queue and sends it to
the receiving simulator. We refer to the time period between the

9To the other cases of HW-SW communication protocols, regular expression
can be easily applied.

start time and the end time of the construction of an HGM as an
HGM construction period.

From the implementational viewpoint, an HGM is an array
of messages. From the viewpoint of the receiving simulator that
reads each incoming message one by one from the Internet com-
munication channel, there is no difference between messages
sent as a group and individually sent messages.

C. Sending a Partial HGM

The HGM construction process requires some modification in
the cases where 1) interrupt occurs during the construction of an
HGM and 2) an HGM is constructed during the data dependent
execution.

1) Handling Interrupt: The simulator can send a partial
HGM on the occurrence of interrupt. Consider hybrid cosimu-
lation, for example, where the SW reads 64 data words from
the HW. Assume that the execution of SW can be interrupted
(e.g., by a timer interrupt to the SW processor) during the read
operation. Fig. 8(a) illustrates a case which is actually similar
to the case shown in Fig. 4(d). The difference is that, in Fig.
8(a), an interrupt is sent to the SW while the HW simulator
is constructing an HGM which is supposed to carry 64 data
words going to the SW. In this case, since the SW execution
will be interrupted by the interrupt sent by the HW, the transfer
of the whole set of 64 data words is not guaranteed. Thus,
the HW simulator stops constructing the HGM and sends the
partial HGM [thick arrow 4 in Fig. 8(a)] as well as the interrupt
message (arrow 5) to the SW simulator. Then the SW simulator
rolls back (white arrow 6) due to the partial HGM (arrow 4).

Fig. 8(b) shows the same case in optimistic cosimulation. In
the figure, while the SW simulator is constructing an HGM that
will contain messages of 64 address values, an interrupt is sent
to SW. In this case, since the SW execution is interrupted by the
interrupt event, the SW simulator stops constructing the HGM
and sends the partial HGM (possibly after rollback), e.g., the
messages collected up to the time point where the SW receives
the interrupt, to the HW simulator.

2) Construction of HGM in Data-Dependent Execution:To
avoid a lengthy delay caused by data-dependent executions
(e.g., data-dependent loops) during the construction of an HGM,
the simulator can send a partial HGM if the delay exceeds a
timeout value () set by the designer. Since
is used only to control the construction of HGM,
is considered only during the HGM construction period. In

YOO et al.: GEOGRAPHICALLY DISTRIBUTED COSIMULATION 499

Fig. 9. Geographically distributed cosimulation of a wireless CDMA cellular phone system.

optimistic cosimulation, if LVT LVT start ,
where LVT start represents the LVT when the simulator
starts to construct the HGM, then the simulator sends a partial
HGM. In hybrid cosimulation, optimistic simulation runs for
the time interval whose size is the minimum of and
W . Thus, if LVT LVT start , W ,
then the simulator sends a partial HGM. If is set to
zero, then the HGM concept is not used.

D. Construction of HGM in Hybrid Cosimulation

As explained in Section II-C1, in hybrid cosimulation the
simulator stops its simulation when it sends a message to the
other simulator or after the time window W elapses. How-
ever, when we apply the HGM concept to hybrid cosimulation,
the optimistic SW simulator does not stop its simulation during
the construction of an HGM. It may continue the simulation be-
yond W . After the construction of the HGM, it stops the sim-
ulation, sends the HGM to the other simulator, and waits for a
message to come from the other simulator.

Basically, only the optimistic simulator can construct HGMs
since potential causality errors caused by the delay of message
transfer must be recovered by the rollback mechanism. How-
ever, in the case that the SW simulator is an optimistic one, the
conservative HW simulator can also construct the HGM.

E. Calculation of GVT During the Construction of HGM

In optimistic cosimulation, every simulator calculates GVT
autonomously when the calculation is required. When a simu-
lator needs to calculate GVT, it sends to other simulators a re-
quest for information required to calculate GVT. Each simulator
receiving the request acknowledges by sending the minimum
among its LVT and the timestamps of unprocessed messages in
its input message queue. If a simulator receives such a request
while the simulator is constructing an HGM, then it sends to the
requesting simulator the minimum among its LVT, the times-
tamps of unprocessed input messages, and the timestamps of
unsent output messages.

V. EXPERIMENTS

A. Examples

We perform geographically distributed cosimulation for three
examples: a wireless CDMA cellular phone system [22], an
H.263 decoder [19], and a JPEG encoder [23].

Fig. 9 shows the CDMA system based on the IS-95 specifi-
cation [24]. The system consists of two mobile stations (MSs),
a base station (BS), and air channel models. The MS and BS
communicate with each other on a 20-ms frame basis. Call pro-
cessor and code excited linear prediction vocoder in the MS gen-
erate the frame data and send them to the transmitter (Tx) of the
CDMA modem in the MS. The Tx in the MS sends the frame
data via the air channel model to the BS. The BS receives the
frame data through its receiver (Rx), processes them for such
operations as call initialization, conversation, registration, etc.,
then sends the frame data to the MS or another MS. In our ex-
periment, we run cosimulation for 60-frame data.

For the H.263 decoder, three frames of a video image called
Carphone (QCIF: 176 144 pixels) are decoded, and for the
JPEG encoder, a 116 96 image is encoded. For the H.263
and JPEG examples, discrete cosine transformation (DCT) and
inverse DCT functions are implemented in HW. The other parts
of the two examples are implemented in SW.

B. Simulator Configurations

Table I shows the simulator configurations of our experi-
ments. For the CDMA system, we use Ptolemy [25] (as the
conservative simulator) and an ARM7 instruction set simulator
(ISS) having optimistic simulation features [26] in hybrid
cosimulation. Since Ptolemy does not perform optimistic
simulation, we omit optimistic cosimulation for the CDMA
system.

For hybrid cosimulation of the H.263 and JPEG examples,
we use the ARM7 ISS for optimistic SW simulation and a HW
emulator [27] based on Xilinx XC4085. The HW emulator is
connected to the network through a PC and does not perform
optimistic simulation but takes the role of a conservative sim-
ulator. In optimistic cosimulation, we use a commercial cycle-
based simulator, Synopsys Cyclone, for optimistic HW simula-
tion utilizing its checkpoint and restore functions [28]. For opti-
mistic cosimulation, we use optimistic simulation library func-
tions [15], which are linked with the ARM7 ISS and Cyclone.
Fig. 10 shows a simplified view of our optimistic cosimulation.
For the case of Synopsys Cyclone, we use C language interface
(CLI) to link the optimistic simulation library functions with
Cyclone. We also use a wrapper process (a Unix process) to
issue simulation commands such as run, checkpoint, and restore
to Cyclone, as shown in Fig. 10. We run the ARM7 ISS, Syn-
opsys Cyclone, and Ptolemy on UltraSparc I workstations with
the clock speed of 143 MHz.

500 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Fig. 10. Optimistic cosimulation using ARM7 ISS and Synopsys Cyclone.

In Table I, we use the number ofhops to denote the
number of Internet connections in a geographically distributed
cosimulation environment.10 To investigate the effect of com-
munication overhead via Internet, we experimented with two
different geographically distributed cosimulation environments:
one with and the other with . The one
with uses two workstations and a PC connected by
the campus network (10-Mbps ATM LAN) at Seoul National
Univ (SNU) in Korea. The case of uses a connec-
tion between a workstation and a PC at SNU and a workstation
at Virginia Institute of Technology (VT) in the United States.
In the case of the CDMA system, as shown in Fig. 9, we simu-
late the call processor and vocoder part of the MS on the ARM7
ISS located at VT and the other part of the CDMA system on
Ptolemy located at SNU in Korea.

C. Specification of HGMs

According to the IS-95 specification [24], there are four
rates of frame data specified for thereverse traffic channel
from the MS and the BS to which we apply the HGM concept
in our experiments.11 We construct HGMs for transferring
one frame data(16, 40, 80, or 172 data words depending on
the rate) between the MS call processor/vocoder and the MS
modem (Tx and Rx). For the H.263 and JPEG examples, we
construct HGMs for transferring 64 data between SW and HW.
In our implementation, a single nongrouped message has 44
bytes of information. For SW to write one data word to HW
(e.g., STR instruction in ARM7 processor), four messages are
transferred from the SW simulator to the HW simulator.12 In
the case that SW reads one data word from HW (e.g., LDR
instruction in ARM7 processor), a single message is transferred
from the HW simulator to the SW simulator together with
four messages transferred from the SW simulator to the HW
simulator. Thus, in the CDMA example, an HGM from the
MS call processor/vocoder to the MS modem contains 2816

to 30 272 bytes and an HGM
from the MS modem to the MS call processor/vocoder contains
704 to 7568 bytes. In the H.263 and

10In this paper,N is defined as the number of Internet routers (including
gateways) plus one.N is obtained by running a program calledtraceroute.

11In our experiments, we do not apply the HGM concept to such other chan-
nels as access channel, pilot channel, sync channel, page channel, and forward
traffic channel.

12In our current implementation of ARM7 ISS, we model LDR/STR instruc-
tions with four different states. In each state, the ARM7 ISS sends a message to
the HW simulator.

TABLE I
SIMULATOR CONFIGURATIONS

TABLE II
RUN-TIMES (SECONDS) OF HYBRID COSIMULATION

JPEG examples, an HGM from SW to HW contains 11 264
bytes and an HGM from HW to SW contains

2816 bytes.

D. Experiments for Hybrid Cosimulation

Table II gives run-times13 of hybrid cosimulation for three
examples. Compared with the cases where the HGM concept is
not applied, by applying the HGM concept, we can obtain 1.18
times (CDMA), 11.28 times (H.263), and 5.61 times (JPEG)
performance improvement when . As the commu-
nication overhead increases—i.e., as increases—the run-
times of hybrid cosimulation without the HGM concept increase
steeply. However, by applying the HGM concept to the hybrid
cosimulation, cosimulation run-times increase much slower so
that we can obtain higher performance improvement up to 19.62
times (CDMA), 51.16 times (H.263), and 65.01 times (JPEG) in
the case of , as shown in Table II. In our experiments
of hybrid cosimulation, when , the network traffic
condition causes up to 30% variation (maximum–minimum) of
cosimulation run-time.14

As shown in Table III, by applying the HGM concept to hy-
brid cosimulation, the numbers of physical messages are re-
duced down to 0.35% (CDMA), 0.78% (H.263), and 0.84%

13In our experiments, we obtained average run-times by running cosimulation
three times.

14Actually, simulation run-times vary depending on the network condition.
Even in a single day, the network condition fluctuates frequently. Thus, the vari-
ation of simulation runtimes can be more than 30% for the cosimulation envi-
ronments with different network configurations.

YOO et al.: GEOGRAPHICALLY DISTRIBUTED COSIMULATION 501

TABLE III
NUMBERS OFPHYSICAL MESSAGES INHYBRID COSIMULATION

TABLE IV
RUN-TIMES (SEC.) OF OPTIMISTIC COSIMULATION

TABLE V
NUMBERS OFPHYSICAL MESSAGES INOPTIMISTIC COSIMULATION

(JPEG). Such drastic reduction is the very source of significant
performance improvement shown in Table II. The effects of such
reduction in the numbers of physical messages become more
evident in the case of , where much higher network
communication overhead consumes the majority of simulation
run-time.

E. Experiments for Optimistic Cosimulation

As shown in Table IV, by applying the HGM concept to opti-
mistic cosimulation, we can obtain 1.53 and 1.40 times (1.20
and 1.44 times) performance improvement for the H.263 ex-
ample (for the JPEG example) in the two cases of . Note
that the cycle-based HW simulator is used in optimistic cosimu-
lation for the HW part simulation while the HW emulator is used
in hybrid cosimulation. Thus, run-times of optimistic cosimula-
tion in Table IV are longer than those of corresponding cases
in hybrid cosimulation in Table II. Table V shows that by ap-
plying the HGM concept, the numbers of physical messages are
reduced down to 5.18% (H.263) and 4.67% (JPEG). Table VI
shows the reduction in the numbers of rollbacks by applying
the HGM concept to optimistic cosimulation. We obtain more
than four times reduction in the numbers of rollbacks for the two
examples.

Fig. 11 shows the histograms of the number of rollbacks
when . In the figure,rollback distancerepresents
the amount of simulated time canceled by rollback. The figure
shows that the numbers of short rollbacks are dramatically
reduced by applying the HGM concept, while those of long
rollbacks slightly increase. The increase in the numbers of
long rollbacks is due to the delayed message transfer for the
construction of the whole HGM. In our experiments, however,
such an increase does not noticeably degrade optimistic cosim-
ulation performance.

Comparing the data in Tables II and IV, we see that the HGM
concept is much more effective in hybrid cosimulation than in
optimistic cosimulation. The reason is as follows. In hybrid

TABLE VI
NUMBERS OFROLLBACKS IN OPTIMISTIC COSIMULATION

Fig. 11. Histograms on rollback statistics (number of rollbacks versus rollback
distance) in the H.263 decoder and JPEG encoder examples.

cosimulation without the HGM concept, two simulators syn-
chronize at least once at every message transfer, as described
in Section II-C1. For one simulator to continue its simulation,
it should wait to receive a message (a null message or an
event carrying message) from the other simulator. Therefore,
grouping messages saves much time otherwise consumed for
such synchronization. On the contrary, in optimistic cosimula-
tion, simulators do not stop to wait for messages. Therefore the
amount of time consumed for the synchronization is small even
when the HGM concept is not used.

VI. CONCLUSION

In this paper, we propose the concept of hierarchically
grouped message to improve the performance of geograph-
ically distributed cosimulation by reducing the number of
physical messages transferred between simulators. We have
obtained significant performance improvement by applying the
proposed concept to geographically distributed cosimulation
of practical examples even in an internationally distributed
cosimulation environment. Our experiments show that the
HGM concept enables geographically distributed cosimulation
to be applied to practical situations.

Currently, we are integrating hybrid and optimistic cosimu-
lation together with the HGM concept into an existing system
design framework. We are also investigating the problem of au-
tomating the message grouping process, which is currently done

502 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

manually. Our future work includes developing efficient syn-
chronization methods in hybrid distributed cosimulation envi-
ronments where software simulators, hardware simulators, and
analog circuit simulators coexist.

REFERENCES

[1] S. Yoo and K. Choi, “Optimizing geographically distributed timed
cosimulation by hierarchically grouped messages,” inProc. Int.
Workshop Hardware-Software Codesign, May 1999, pp. 100–104.

[2] K. Hines and G. Borriello, “A geographically distributed framework for
embedded system design and validation,” inProc. Design Automation
Conf., June 1998, pp. 140–145.

[3] M. Dalpasso, A. Bogliolo, and L. Benini, “Virtual simulation of
distributed IP-based designs,” inProc. Design Automation Conf., June
1999, pp. 50–55.

[4] R. Goering. (1999, Jan.) Global chip design raises
promises and challenges. EE Times [Online] http://www.ee-
times.com/story/OEG19 990 111S0016

[5] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski, “Executable
workflows: A paradigm for collaborative design on the internet,” in
Proc. Design Automation Conf., June 1997, pp. 553–558.

[6] D. E. Thomas and S. L. Coumeri, “A simulation environment for hard-
ware-software codesign,” inProc. Int. Conf. Computer Design, Oct.
1995, pp. 58–63.

[7] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D.
Tarrodaychik, and O. Yamamoto, “A hardware-software co-simulator
for embedded system design and debugging,” inProc. Asia South Pacific
Design Automation Conf., 1995.

[8] C. Valderrama, F. Nacabal, P. Paulin, and A. Jerraya, “Automatic
VHDL-C interface generation for distributed cosimulation: Application
to large design examples,”Design Automat. Embedded Syst., vol. 3, pp.
199–217, Mar. 1998.

[9] K. Hines and G. Borriello, “Optimizing communication in embedded
system co-simulation,” inProc. Int. Workshop Hardware-Software
Codesign, Mar. 1997, pp. 121–125.

[10] , “Selective focus as a means of improving geographically
distributed embedded system co-simulation,” inProc. 8th IEEE Int.
Workshop Rapid System Prototyping, June 1997, pp. 58–62.

[11] , “Dynamic communication models in embedded system co-simu-
lation,” in Proc. Design Automation Conf., June 1997, pp. 395–400.

[12] S. Yoo and K. Choi, “Synchronization overhead reduction in timed
cosimulation,” inProc. IEEE Int. High Level Design Validation and
Test Workshop, Nov. 1997, pp. 157–164.

[13] , “Optimizing timed cosimulation by hybrid synchronization,” in
Design Automation for Embedded Systems. Norwell, MA: Kluwer
Academic , June 2000, vol. 5, pp. 129–152, to be published.

[14] H. Rajaei, R. Ayani, and L. Thorelli, “The local time warp approach
to parallel simulation,” inProc. 7th Workshop Parallel and Distributed
Simulation, 1993, pp. 119–126.

[15] S. Yoo and K. Choi, “Optimistic distributed timed cosimulation based
on thread simulation model,” inProc. Int. Workshop Hardware-Software
Codesign, Mar. 1998, pp. 71–75.

[16] W. Gropp and E. Lusk. Tuning MPI applications for peak performance.
[Online] http://www-unix.mcs.anl.gov/mpi/tutorial/perf/index.html

[17] M. Chetlur and N. Abu-Ghazaleh, “Optimizing communication in
time-warp simulators,” inProc. 12th Workshop Parallel and Distributed
Simulation, May 1998, pp. 64–71.

[18] Y. Kim, K. Kim, Y. Shin, T. Ahn, and K. Choi, “An integrated cosimu-
lation environment for heterogeneous systems prototyping,”Design Au-
tomat. Embedded Syst., vol. 3, no. 2/3, pp. 163–186, Mar. 1998.

[19] Telenor. Telenor’s H.263 software. [Online]
http://www.nta.no/brukere/DVC/h263_software/

[20] D. Jaggar, Advanced RISC Machines Architectural Reference
Manual. Englewood Cliffs, NJ: Prentice-Hall, July 1996.

[21] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers: Principles, Tech-
niques, and Tools. Reading, MA: Addison-Wesley, 1988.

[22] Qualcomm, Inc.,CDMA System Engineering Training Handbook, 1993.
[23] Portable Video Research Group. PVRG-JPEG CODEC. [Online]

ftp://havefun.stanford.edu/pub/jpeg/JPEGv1.2.1.tar.Z

[24] TIA/EIA-95A, “Mobile station-base station compatibility standard for
dual-mode wideband spread spectrum cellular systems,”, 1995.

[25] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,”Int.
J. Comput. Sim. (Special Issue on Simulation Software Development),
vol. 4, pp. 155–182, Apr. 1994.

[26] W. Jang, D. Lim, and S. Yoo. ARM7 instruction set simulator. [Online]
http://poppy.snu.ac.kr/Codesign/ARMISS/

[27] D. Lim, K. Na, and S. Yoo. Design automation lab. prototyping board.
[Online] http://poppy.snu.ac.kr/Codesign/DAL_P98A/

[28] Synopsys, Inc. Cyclone VHDL reference manual. [Online] Synopsys
Online Documentation, v1998.08

Sungjoo Yooreceived the B.S. degree in electronics
engineering and the M.S. and Ph.D. degrees in elec-
trical engineering from Seoul National University,
Korea, in 1992, 1995, and 2000, respectively.

His research interests include hardware–soft-
ware cosimulation, performance estimation in
system-level design, low-power system design, and
reconfigurable system design.

Kiyoung Choi received the B.S. degree in electronics
engineering from Seoul National University, Korea,
in 1978 and the M.S. degree in electrical and elec-
tronics engineering from Korea Advanced Institute of
Science and Technology, Korea, in 1980. He received
the Ph.D. degree in electrical engineering from Stan-
ford University, Stanford, CA, in 1989.

From 1978 to 1983, he was with GoldStar, Inc.,
Korea, and from 1989 to 1991, he was with Cadence
Design Systems, Inc. In 1991, he joined the Faculty
of the Department of Electronics Engineering, Seoul

National University, as an Assistant Professor. In 1995, he joined the Faculty of
School of Electrical Engineering, Seoul National University, where he is now
an Associate Professor. His primary interests are in VLSI design and various
aspects of computer-aided design, including hardware–software codesign, high-
level synthesis, and low-power systems design.

Dong Sam Ha (S’83–M’85–SM’97) received the
B.S. degree in electrical engineering from Seoul
National University, Korea, in 1974 and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Iowa, Iowa City, in 1984 and
1986, respectively.

Since 1986, he has been a Faculty Member of
the Bradley Department of Electrical and Computer
Engineering, Virginia Polytechnic Institute and State
University, Blacksburg. Currently, he is a Professor
with the department. Prior to his graduate studies,

he was a Research Engineer for the Agency for Defense Development, Korea,
from 1975 to 1979. While on leave from May to December of 1996, he was
with the Semiconductor Research Center of Seoul National University, where
he investigated built-in self-test synthesis. He was a Guest Researcher of the
German National Research Center for Computer Science (GMD) near Bonn,
Germany, in the summer of 1994. He, along with his students, has developed
four CAD tools for digital circuit testing. The source code for these four tools
has been distributed to more than 130 universities and research institutions
worldwide. The tools have been used for various research and teaching
purposes at numerous universities. His research interests include low-power
VLSI design for wireless communications, low-power wireless video system
design, low-power analog and mixed-signal VLSI design, design for testability,
and built-in self-test.

