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A Method for Compressing Test Data Based
on Burrows-Wheeler Transformation
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Abstract—The overall throughput of automatic test equipment (ATE) is affected by the download time of test data. An effective
approach to the reduction of the download time is to compress test data before the download. A compression algorithm for test data
should meet two requirements: lossless and simple decompression. In this paper, we propose a new test data compression method
that aims to fully utilize the unique characteristics of test data compression. The key idea of the proposed method is to perform the
Burrows-Wheeler transformation on the sequence of test patterns and then to apply run-length coding. Experimental results show that
our compression method performs better than six other methods for compressing test data. The average compression ratio of the
proposed method performed on 15 test data sets is 94.6, while that for the next best one, Gzip, is 65.0. The experimental results also
show that our method indeed reduces the download time significantly, provided a dedicated hardware decompressor is employed.

Index Terms—Data compression, test data compression, compression, test data, Burrows-Wheeler transformation, run-length

coding.

1 INTRODUCTION

EST patterns are usually generated and stored on

workstations or high-performance personal computers.
The increased variety of ASICs and decreased production
volume of individual types of ASICs requires more frequent
downloads of test data sets from workstations to automatic
test equipment (ATE). In addition, because of the sheer size
of test sets for ASICs, often as large as several gigabytes, the
time spent to download test data from computers to ATEs is
significant. The download from a workstation storing a test
set to the user interface workstation attached to an ATE is
often accomplished through a network. The download takes
from several tens of minutes to hours. The test set is then
transferred from the user interface workstation of an ATE to
the main pattern memory through a dedicated high speed
bus. The latter transfer usually takes several minutes. The
transfer of test data from a workstation to an ATE is shown
in Fig. 1.

During the download period of a test set, the ATE is idle,
wasting this valuable resource. The overall throughput of
an ATE is affected by the download time of test data and
the throughput becomes more sensitive to the download
time with the increased variety of ASICs. One common
approach to improve the throughput of an ATE is to
download the test data of the next chip during the testing of
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a chip. It cuts down the effective download time of test data,
but the approach alone may not be sufficient. An ATE may
finish testing of the current chip before the download of the
next test data is completed. Another approach is to
compress the test data, which is the focus of the paper.
The two approaches can be readily combined together to
further improve the efficiency.

A compression algorithm for test data should meet two
requirements: It should be lossless and have simple
decompression. As the decompression is performed on
the ATE side, the decompression time should be minimized
to reduce the overall download time. However, compres-
sion time does not affect the download time, as it can be
prepared in advance on a computer. Therefore, a suitable
method for the ATE environment is possibly complex in
compression, but simple in decompression. The unique
characteristics of test data compression need be exploited to
maximize efficiency when designing a test data compres-
sion scheme. Another characteristic that can be exploited for
test data compression is that subsequent test patterns on the
same pin are strongly correlated, but the patterns on
different pins are weakly correlated.

A simple compression scheme that can be applied to test
data compression is run-length coding, where a sequence of
equal symbols is encoded into two elements, the repeating
symbol and the length of the sequence. For data with many
long sequences of equal symbols, run-length coding is
apparently efficient. Huffman coding is more sophisticated
than run-length coding and yields better compression [1].
Huffman coding builds a binary tree based on the
probability of the occurrence of the letters, where leaves
in the binary tree correspond to the letters. The Huffman
code for a letter is obtained by traversing the tree from its
root node to the leaf corresponding to the letter,

1. An earlier version of the paper appears in [14].
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Fig. 1. Download of test patterns to automatic test equipment.

concatenating “0” to the code word every time it
traverses over a left branch and “1” over a right branch.
A different approach from the above two methods is
arithmetic coding [2]. Arithmetic coding generates a unique
tag or identifier for a given sequence of symbols, then
deciphers tags to restore the original sequence. The main
advantage of arithmetic coding over Huffman coding is that
building a binary tree structure is unnecessary. The Lempel-
Ziv (LZ) method, based on the construction of a dictionary,
builds a list of patterns. The LZ method encodes patterns
according to their indices in the list [3], [4]. The LZ method
does not require a priori knowledge of the probability of the
occurrence of letters and becomes more efficient for a longer
sequence of patterns whose characteristic is static. The
Lempel-Ziv-Welch (LZW) algorithm, which is a derivative
of the LZ method, collects new phrases into a dictionary [5].
When a repeating phrase is found, the index of the phrase
in the dictionary is recorded to compress the phrase. Some
compression utilities available on personal computers and
workstations (such as PKZIP [6] and compress) implement
variations of the LZ method. The Lempel-Ziv-Storer-
Szymanski (LZSS) algorithm keeps track of the last n bytes
of data [7]. When a phrase that has appeared before is
encountered, the phrase is encoded as a pair of values
corresponding to the position of the phrase in the buffer
and the length of the phrase. Besides the above general data
compression algorithms, there are many compression
methods designed for special applications such as speech,
image, and video [8], [9], [10]. These methods are usually
lossy and, therefore, cannot be applied to test data
compression.

The general purpose compression algorithms described
above do not exploit the unique characteristics of test data
compression. Hence, they usually result in a low compres-
sion ratio. A different approach for test data compression
was investigated in [11], [12], [13]. The goal of the methods
is to compress test data, so that the test generation circuitry
is simplified to reduce the hardware overhead in the BIST
(Built-In Self-Test) environment. These methods do not
yield a high compression ratio (which is not the goal of the
methods), so that they are not applicable for reduction of
download time.

In this paper, we propose a new compression method
which transforms a given test set first and then applies run-
length coding. The proposed method, which fully utilizes
the unique characteristics of the ATE environment and of
test data, achieves a high compression ratio. Another salient
point of the proposed method lies in simple decompression.
The decompression algorithm can be easily realized in
hardware to decompress multiple columns simultaneously.
A dedicated hardware operating on multiple columns in
parallel substantially reduces the decompression time,
which leads to a significant reduction of download time.
(Experimental results will be shown in Section 4.) This is a
good contrast to our previous method presented in [15],
which employs both run-length coding and a UNIX utility
Gzip for a transformed data. The method in [15] performs
better in compressing test data, but the high complexity of
the decompression procedure renders the method not
suitable for a dedicated hardware implementation.

The paper is organized as follows: Section 2 gives
preliminaries necessary to understand the proposed method.
Section 3 proposes a test data compression method. In
Section 4, we present experimental results performed on
fifteen test sets and compare the results with other
compression techniques. Section 5 summarizes the paper.

2 PRELIMINARIES

In this section, we describe the characteristics of test data
and define necessary terms. We briefly review run-length
coding and Burrows-Wheeler transformation method,
which are necessary to understand the proposed method.

We use the term compression ratio, instead of compres-
sion rate, throughout the paper. The compression ratio is
defined as the ratio of the number of bits required to
represent an original uncompressed data to that of the
compressed data.

2.1 Characteristics of Test Data

For a large complex circuit, a designer or a test generator
generates test patterns considering one or a few modules at
a time. Therefore, a block of test patterns usually exercises a
few modules of the circuit, while other modules are put
under certain static conditions. This implies that logic
values for only a subset of input pins change for the block(s)
of test patterns, while other input pins are held at constant
logic values. Fig. 2 shows the testing of a module and a
typical block of test patterns. In Fig. 2, bold characters
denote active input pins whose logic value changes
frequently and their logic values. All the other input pins
are held at constant values for the entire block of the test
patterns except for the initial setup stage. Another useful
observation that we made from industrial test data is that
the sequence of test patterns of an active input pin often
forms cycles. For example, Pin 4 in Fig. 2 forms a cycle
“X11X00” and the cycle repeats two times before it breaks.
Pin 6 forms a cycle “X00” and it repeats three times.

A test set is represented as a P x () matrix, where P is the
number of test patterns, and Q is the number of pins. A
column number in the matrix corresponds to the pin
number of the circuit. We use the terms column number
and pin number interchangeably in this paper. The activity
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Fig. 2. Testing of a module and its test patterns.

of a column ¢; is defined as the number of transitions on the
ith column of a test set, and is denoted as «(ci). The activity
of an example test set is given in Fig. 3.

2.2 Run-Length Coding

A sequence of identical symbols in a string is called a run.
Run-length coding compresses data by representing each
run into two tuples, the repeating symbol in the run and the
run length. A string “aabbbbcccd” has four runs, aa, bbbb,
ccc, and d. It is coded as (a,2), (b,4), (¢,3), (d,1).

Run-length coding is simple in compression and in
decompression. It is efficient for pins with low activity and
is used in the proposed method.

2.3 Burrows-Wheeler (BW) Transformation

Burrows and Wheeler proposed a data compression
method based on Wheeler’s earlier transformation studied
in 1983 [16], [17]. The compression method was further
investigated recently by Balkenhol and Kurtz [18]. Consider
an input string S which has n characters. The first step of the
BW transformation is to form an n x n matrix, where the
nth row is the string obtained by performing (n — 1) rotate-
left operations on the original sequence. Then, the rows of
the matrix are sorted lexicographically. Burrows and
Wheeler showed that if the last column T of the sorted
matrix and the row index I of the original string in the
stored matrix are available, the original string S can be
restored through a simple process. The restoring procedure
does not require a sorting process. For details of the
operation, refer to [16] and [17]. The BW transformation is
illustrated for string S with “abraca” in Fig. 4. Fig. 4a shows
the matrix formed by rotating the original sequence and
Fig. 4b shows the matrix after the lexicographic sorting of
the rows.
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BN XXXoo|N
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Fig. 3. Activity of pins of a test set.
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S = abraca
1 abraca
2 bracaa
3 racaahb
4 acaabr
5 caabra
6 aabrac
Fig. 4a. The BW transformation. (a) Initial matrix.

1 aabrac T = caraab

2 abraca 1=2

3 acaabr

4 bracaa

5 caabra

6 racaab

Fig. 4b. The BW transformation. (b) Sorted matrix.

A salient characteristic of the BW transformation is that
the resultant string T usually gives a better compression
ratio for run-length coding than does the original string S.
For example, the number of runs for the original string S in
Fig. 4 is 6, but that for the resultant string T is 5. The effect is
more evident for sequences with cycles. Consider a
sequence S with “000100010001,” which has six runs. The
resultant string T after the BW transformation is
“111000000000,” which has only two runs. However, it
should be noted that the BW transformation does not
always decrease the number of runs for a sequence. The
BW transformation of “000111” is “100110,” for which the
number of runs increases from two to four. It seems
difficult to predict the change of the activity of a string
before and after the BW transformation.

As noted earlier, the test sequence of an active pin often
forms cycles. Hence, the BW transformation of the sequence
makes run-length coding effective. Another desirable aspect
for the BW transformation in test data compression is that
the reverse operation, i.e., decompression, is simple since it
does not involve a sorting process. One point to be noted
in using the BW transformation for test data compression
is that, because it requires lexicographic sorting for the
BW transformation, partition of a test set into subblocks is
often necessary before applying the BW transformation. In
general, smaller subblocks make run-length coding less
effective. However, the problem may be alleviated by
adopting an efficient lexicographic sorting method such as
the one proposed in [19] and [20].

3 PRopPosep COMPRESSION METHOD

In this section, we present a new method for compressing
test data. A primary goal of the proposed method is that the
decompression scheme should be simple, possibly at the
cost of a complex compression scheme. To this end, we
employ the BW transformation and run-length coding.

3.1 Overall compression procedure

Let a given test data set D be represented as a matrix of
P x Q. The test data is partitioned into several equal size
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Fig. 5. Construction of a new test data set F;.

submatrices D; of M x @ as shown below. Note that the last
submatrix D) may have a smaller size. The partition of the
matrix is not essential, but the number of rows, M, affects
the overall compression ratio and the processing time (as
our experimental results show). A larger M results in
substantially longer processing time due to the sorting
process necessary for the BW transformation.

D,
p=|P
Dy,

Our compression method is applied to individual
submatrices D;’s instead of to the original matrix D.

We apply the BW transformation on individual columns
of a test set D,. As mentioned earlier, it is difficult to predict
the activity of a BW transformed column. In addition, high
complexity of the compression process is tolerable for test
data compression, as long as the decompression
process is kept simple. Hence, we propose to apply
the BW transformation on each column and to measure
the activity of the BW transformed column. (In fact, the
BW transformation of a column with activity 0 or 1 is
unnecessary, as the transformation does not change the
activity.)

A new test data set E; is composed of original or BW
transformed columns of D;. Let d;, be the kth column of
D;, and let d; be the BW transformed column of dj. The
kth column e, of E; is defined as

_ld

€ = { dk,

where «o(dx) and «(d;) are the activity of d; and dj,

respectively, and «; is a threshold value. E; collects a

BW transformed column only if the activity of the BW

transformed column is less than that of the original one

and a threshold value. Therefore, run-length coding

always compresses better with new test data E; than the
original test data D;.

Run-length coding is applied only to each column ¢;
whose activity a(c;) is less than the threshold value ¢. For a
column whose «(¢;) > a; run-length, coding does not
compress data for the column. For such a column, it is better
for E; to keep the original column instead of the transformed
one, which saves the time for the reverse BW transformation
for the column. Details regarding the threshold value will be
discussed in Section 3.3.

The construction of an E; from a test data set D; is
illustrated in Fig. 5. The last row of each table in the figure

if a(d}) < a(dy) and a(df) < oy
otherwise,

TABLE 1
Encoding of Run-Length Coding
e Symbol ¢
Transition: s — ¢ 0 " X
0 - L L+M
Symbol s 1 L+M - L
X L L+M -

indicates the activity of the columns. Let us suppose that the
threshold value ¢ is given as 3. The activity of four columns,
columns 1, 2, 6, and 7, decreases after the BW transforma-
tion. However, the activity of the BW transformed column 1
(which is 4) exceeds the threshold value 3. Hence, the
original columns are replaced by the BW transformed
columns only for columns 2, 6, and 7 (which are in
boldface in Fig. 5) in FE;. To restore the original data D;
from E; during decompression, it is necessary to flag the
BW transformed columns in FE;. Note that the overall
activity of D; is 26 and that for E; is 16. Hence, run-length
coding is more effective with E;.

Throughout the remainder of this section, a test set or a matrix
denotes a submatrix E;. In other words, the flag to indicate
the BW transform of a column and the column index I are
not considered in the analysis.

3.2 Encoding and Decoding Schemes
for Run-Length Coding

A straightforward run-length coding encodes a sequence of
a run in two tuples, (s, L), where s is the repeating symbol
and L is the length of the run. For example, run-length
coding encodes a sequence “XX1110XX"” as (X,2), (1,3), (0,1),
(X,2). Note that parentheses and commas are only for
readability and they do not appear in the compressed data.
The encoding scheme requires one symbol and one integer
number for each run.

Next, we describe a more efficient encoding scheme
suitable for test data. Consider two consecutive runs, (s, Ls)
and (t, Lt), where “s” and “t” are the repeating symbols and
Ls and Lt are the run lengths. The two runs make a
transition from “s” to “t” at the boundary of the runs.
Suppose that the repeating symbol of the first run, “s,” is
known. The proposed encoding scheme is to compound the
run length Ls of the first run and the repeating symbol of
the following run, “t,” into a single integer.

Let A be the set of all possible symbols for a string and M
be the length of the string. For test data, symbols are usually
confined to small number (three or four) of logic values. We
consider three logic values® (A = 0,1,X) in this paper, but
the proposed method can be readily extended for a larger
logic value system. The rule to compound the run length L
of the run and the repeating symbol “t” of the following run
is shown in Table 1. For example, consider the encoding of a
string “X1111XX” whose length M is 7. The first run “X” is
followed by another run “1111.” The length of the first run L
is 1 and the first run makes a transition from “X” to “1.”
Using the table, the transition is encoded as L+ M,

2. The number of logic values employed depends on ATEs. For example,
Advantest ATEs employ eight logic values, which distinguish logic values
of input pins from output pins.
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Test Data E, Encoded Data
1234 Length M: (5)
0X0X Column 1: (0,3, 1, 7, 6)
1X0X Column 2: (X, 3,2, 1,1)
10001 Column 3: (0, 0)
010x Column 4: (X, 2,7, 1)
XX0X

Fig. 6. Encoded test data.

which is 8. The next run to work on is “1111,” which is
followed by “XX.” The run length L is 4 and the transition
is from “1” to “X.” It is encoded as L, which is 4. The last run
“XX” does not make any transition at the end. Hence, no
encoding is necessary for the last run. In order to restore the
original sequence, the proposed encoding scheme requires
the starting symbol of a sequence, the activity (i.e., the total
number of transitions) and the length. Since the length of all
sequences is the same for a test set, it is necessary to record
the length only once for each test set E;. Hence, the
requirement to record the length of a sequence is ignored in
subsequent discussions.

The encoded data of a small test set E; (assuming run-
length coding is applied to every column) is given in Fig. 6.
The first element of each column denotes the starting
symbol, the second element the activity a of the column,
and the remaining ones the run lengths and their transitions
obtained using Table 1. The column numbers, parentheses,
and commas are only for readability and are not stored in
the encoded data.

The decoding of the data encoded by the proposed
scheme is as follows: Suppose that the symbol of the current
run is known. Note that the symbol of the first run for each
sequence, i.e., column, is given. The integer, say i,
corresponding to the current run (viz. 1 for the first run in
column 1, 7 for the second run, and 6 for the third run) is
decoded to obtain the length of the current run and the
symbol of the following run. The length of the current run is
computed as (i%M), where % denotes the modulus
operation and M is the length of the sequence. Let j be
[i/M], where [z] is the smallest integer > z. Then the
symbol of the next run is the jth character following the
current one in the circular fashion given in Fig. 7.

For example, the starting symbol of column 4 for the
encoded data in Fig. 6 is X. Hence, X is the symbol for the
first run of column 4. The corresponding integer for the
first run is 7. The length of the run is obtained as (7%5),

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.5, MAY 2002
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Fig. 7. Determination of the next symbol.

which is 2. The number j is obtained as [I], which is 2.
Hence, the symbol of the second run is the second
character following X in the cycle in Fig. 7. Hence, the
symbol for the second run is 1. A formal procedure for
decoding of encoded data is described below.

Length — M;
// Start processing a column.
Current_Symbol « the starting symbol;
Loop_Count « the activity «;
while (Loop_Count > 0) do
{Transition_Info < the next integer;
Repeat Current_Symbol by (Transition_Info
% Length) times;
Find the character ¢ for the following run as explained
in the above.
Current_Symbol « t;
Decrement Loop_Count by 1.
} // End While
Repeat Current_Symbol to fill up the remaining
positions of the column.
// End processing a column.

The numbers of bits necessary to represent a sequence
without any coding, with the conventional run-length
encoding scheme, and with the proposed run-length
encoding scheme are given in Table 2. The following
notations are used in the expressions and in the following
discussions:

|A| :the number of symbols in a sequence,
M : length of the sequence,

o the activity of the sequence, and

[z] : the smallest integer > z.

For the expressions in Table 2a, [log, |A|] is the number
of bits needed to represent a symbol. For the conventional
encoding scheme, the term (a + 1) is the number of runs.
[log, M is the number of bits necessary to represent a run
length, which is determined by the longest run (which is
M). The first two terms in the proposed encoding scheme
account for the starting character and the activity. (The
maximum value of the activity of a column is assumed to be
M —1 for the time being.) The integer necessary to

TABLE 2a
The Number of Bits Required to Represent a Sequence

Scheme

Number of bits

No coding

Ml log:|4|]

Conventional encoding scheme

(o D Togy/4[ 1+ [TogaM D

Proposed encoding scheme

[Mog)d| 1+ ogaM 1+ o[ Tog,(M(A4|-1)-1) |

(a) General case.
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TABLE 2b
The Number of Bits Required to Represent a Sequence
Scheme Number of bits
No coding 2M
Conventional encoding scheme (a+ 1) logaM +2)
Proposed encoding scheme (o+1)( logaM H1)+1

(b) The case for |A| =3 and M >> 1.

represent a transition for the proposed encoding scheme is
no larger than (M(|A|—1)—1). Hence, the proposed
scheme needs [log,(M(|A| —1) —1)] bits to represent an
integer for a transition. Readers may verify that the number
of bits required for the proposed method is always less than
or equal to that for the conventional encoding scheme.

Table 2b shows the case for large test data sets where
|A| =3 and M >> 1. It shows that the proposed encoding
scheme is always more efficient than the conventional
encoding scheme provided the activity o is greater than 0. The
table also reveals that run-length coding fails to compress the
test sequence of a column when the activity « of the column is
over a certain threshold value. This is illustrated in Fig. 8 for
the case of M = 1, 000.If the activity «is over 181 in the figure,
it is more advantageous not to apply run-length coding.
Details on the threshold value are discussed in the
following.

3.3 Threshold Value for Run-Length Coding

The expressions in Table 2 show that, as the activity of a
column becomes larger, run-length coding becomes less
efficient. In fact, the length of a compressed sequence is
roughly proportional to the activity «. If « is greater than a
threshold value «;, run-length coding fails to compress the
data. Hence, it is better not to apply run-length coding. From
equations in Table 2a, the following equality holds for a = a.

[log, [A[] + [logy, M + v [logy (M (|A| = 1) —1)]

= MTlog, |A[].
3000
2500+
| SR s
=
w“
o
5 1500
o)
£
1000+
=z
—-—-- No coding
s00- .~ | Conventional
—— Proposed
0 ,
0 50 100 150 200 250

Activity

Fig. 8. Number of bits required for the three schemes with M = 1,000 in
Table 2b.

Hence, the threshold value o, for the proposed encoding
scheme is

o — [Mﬂogz |A]] — [log, M7 — [log, IAIW
t |loga(M(|A] = 1) — 1) '

The above equation is simplified, as in Table 2b, for
|[A|=3 and M >>1,

2M -1
= |
"7 | Togy, M +1]

The threshold value «; increase as M increases and the
trend is shown in Fig. 9. Each discontinuous point in the
graph in Fig. 9 corresponds to a length M with a power of 2.
If the activity of a column exceeds the threshold value a4,
we propose not to apply run-length coding to the column.

Let us reexamine the number of bits necessary to store
the activity, say N(a), in each column for the proposed
encoding scheme. So far, we have considered N(«) to be
[log, M assuming the maximum value of the activity of a
column is (M — 1), where M is the length of the sequence.
However, we apply run-length coding to a column only if
the activity of the column is less than the threshold value «.
Hence, the necessary number of bits N(«) can be reduced to
[log, a;]. For the above example, M = 1,000 and |A| =3,
the threshold value «; is 181. So the number of bits
necessary to store the number of transitions, N(«), is 8 bits
instead of 10 bits (which is [log, M|, where M = 1,000).

The number of bits N(a) can be further reduced if a
column satisfies the following condition. For any column ¢;

500
450 -
400
350-
300-
250-
200-
150-
100-
50

Threshold Value

0 500 1000 1500

Length M

2000 2500 3000

Fig. 9. Threshold value of a sequence.
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with activity a(c;) < o, it is also true that a(c;) < o}, where
a; < oy. We call of an actual threshold value. If a data set E;
satisfies such a condition, N(«) can be reduced to [log, o]
from [log, o] for the data set E;. For example, consider a
test set E; whose column activities are {3,10,2,3,1,8}.
Suppose that the threshold value «; of the test set is 6.
Run-length coding is applied only to the four columns
whose activity is less than 6. Note that the activities of
the four columns are less than 4. Hence, the actual
threshold value of the test set is 4 instead of 6. The
number of bits necessary to store the activity N(«) is 2
(which is obtained as [log, 4]) instead of 3 (= [log, 6]). As
the actual threshold value «a; of a test set depends on the
test data, it is necessary to record the actual threshold value
for each test set E;. The reduction of the threshold value
from o, to a; increases the compression ratio for some test
sets. Finally, it should be noted that changing the number of
bits necessary to store the activity N(«), in turn, changes the
threshold value ;. Hence, the threshold value obtained in
the above equation is not exact, but the accuracy may be
sufficient for practical purposes.

To enable decoding of the encoded data, it is necessary to
put another flag with each column to indicate whether
run-length coding has been applied to the column or not.
So, a total of two flags, one to indicate the application of
the BW transformation and the other to indicate the
application of run-length coding, are necessary for each
column. As the number of columns of a test data set, i.e.,
the number of pins for the circuit, is much less than the
number of rows, i.e., the number of test patterns, the
impact of the additional two bits required for each column
is negligible to the overall performance.

3.4 Decompression

All the operations performed on the original test data are
reversible. Hence, the encoded data can be decompressed
and the process is lossless. It should be noted that the
inverse operation of the BW transformation is much simpler
than the BW transformation, as it does not require a
sorting process. For details of the inverse operation of the
BW transformation, refer to [16] and [17].

Two major advantages of the proposed compression
scheme are the simplicity of the decompression scheme and
easy parallelization of the decompression process in hard-
ware. The simple decompression scheme, which is an
important requirement in compressing test data, reduces
the decompression time to result in the reduction of the
overall download time. A significant reduction of the
decompression time can also be achieved through a
dedicated hardware. When a dedicated hardware is
employed for decompression, multiple columns can be
processed in parallel for the proposed method. Note that
the decompression process of a column is independent of
the decompression of other columns for the proposed
method. The parallel operation cuts down further the
decompression time at the cost of higher complexity for
the hardware. Considering the high price of ATE, the
hardware cost may well be justified.
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Reduction Ratio

Fig. 10. Reduction ratio of the download time versus r/d.

3.5 Reduction of Download Time

The download time of test date depends on the test set size,
the compression ratio, the decompression speed, and the
data transfer rate of the network. Let us denote:

e s size of an original test data (bits),
e (: compression ratio,

e d: decompression speed (bits/second), and
e r: transfer rate of the network (bits/second).

—

t should be noted that the decompression speed is
measured as the number of compressed bits processed per
second. The download time of an original data is

S
torig = ;7

while the download time of a compressed data is

PR n s s 1Jr 1

M e ed c\r d)
The first term for the compressed data is the data transfer
time and the second term is the decompression time. The

reduction ratio of download time of original data to the
download time of the compressed data is given as

s
torig _ r c c

cGrd) rGy) 14

The reduction ratio increases as the compression ratio ¢
and the decompression speed d increases and as the transfer
rate r decreases. Note that the ratio is independent of the
size of the test data. The reduction ratio versus the ratio of
the network speed to the decompression speed, r/d, is
shown in Fig. 10. The performance approaches to its
maximum value c as r/d approaches 0. As r/d increases,
the reduction ratio decreases to reach a critical point where
the compressed data set fails to reduce the download time
any longer.

(1)

t(:omp

4 EXPERIMENTAL RESULTS

We measured the performance of the proposed method on
large test data sets of four real-life industry chips and
compared the results with other compression methods. The
test sets (named after their circuits) are:
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TABLE 3
Compression Ratios for Various Sizes of D;

Test  |# patterns Size of Submatrices D;
Set (x1000) 512 1024 2048 4096 8192 16384 | 32768 | 65536
Al 20 10.27 11.66 12.29 14.37 15.1 16.22 17.69 -
A2 15 37.31 49.12 56.95 63.07 65.67 61.77 - -
K1 45 31.74 53.91 83.96 | 11696 | 14091 154.08 | 14589 | 13540
K2 31 3.89 3.76 3.60 3.41 3.27 3.08 3.02 -
K3 33 6.73 6.67 6.33 6.09 6.11 7.11 8.53 8.26
Pl 103 4145 69.19 | 142.02 | 218.77 | 338.65| 47231| 63694 | 878.68
P2 65 36.54 7096 | 135.07 | 23573 [ 339.13 | 396.88 | 469.46| 492.37
P3 65 51.68 75.02 97.17 | 11145 122.3 | 124.33| 122.49| 117.58
P4 842 16.85 18.18 19.02 18.92 18.08 16.80 29.15 54.91
P5 209 9591 | 178.84 | 33596 | 581.63 | 944.57 | 1391.86| 1853.66 | 2377.54
P6 1027 38.12 68.33 132.6 | 23825 | 438.14 | 782.25| 1316.54 | 2095.79
P7 457 35.07 74.15 156.7 | 347.07 | 726.49 | 1454.54| 1847.35 | 2044.36
P8 498 34.55 72.83 | 15346 | 340.05 [ 72533 | 1489.16| 1875.12 | 2096.43
S1 33 113.17 | 20431 | 35838 | 599.18 | 932.12 1317.4] 1671.83 | 1836.52
S2 12 9431 | 15530 | 23634 | 32435 | 417.02 | 502.22 - -

A1, A2 : test sets for a disk controller,

K1 - K3 : test sets for a CISC microcontroller,
S1, S2 : test set for a RISC microcontroller, and
P1 - P8 : test set for a CD-ROM controller.

Each test set is a subset of the test set for a circuit and
each subset is intended to test one or a few modules of
the circuit. The size of test sets is in the range of 15,000 to
one million test patterns. All the test sets contain only
three logic values, 0, 1, and X.2 The proposed method was
coded in the C programming language and the program
runs on workstations under the UNIX environment. All the
experiments were performed on a Sun Ultra 2 workstation.

In the proposed method, a test set is partitioned into
submatrices D; of size M x Q. The size M, i.e., the number
of rows, of a submatrix D; affects the compression ratio and
is sensitive to the compression time (which is not important
for test data compression). The first experiment was to
observe the effect of the size of D; on the compression ratio.
The experimental results are shown in Table 3.

From the experiment, the general trend is that as the size
of submatrices increases, the compression ratio also
increases until it reaches the peak point (boldface in the
table). All the test sets, except one, reach their peak for the
maximum or a large size of the submatrices. This is because
the BW transformation and run-length coding becomes, in
general, more effective for a larger block size. A compres-
sion ratio increases rapidly until it reaches the peak point,
but decreases slowly after the peak point. Hence, it is a good
idea to make the size of submatrices as large as possible, as
long as the processing time of the BW transformation is
acceptable. It should be noted that as the size of submatrices
increases, the compression time increases sharply because
of the sorting process necessary for the BW transformation.
For example, the compression takes about 49 CPU seconds
for the largest test set P8 with about one half million

3. It requires two bits to represent each symbol. Hence, the compression
rate is equal to 2/compression ratio for the test sets.

patterns when the size of submatrices is 512, but the time
increases to 52.4 CPU hours when the size is 65,536. For the
subsequent experiments, the size of the submatrices for each test
set is set to its maximum size or 65,536, whichever is smaller.

The efficiency of the proposed method is based on the
claim that the BW transformation reduces the activity of test
sets. In the following, we present experimental results
regarding the activity of test data before and after the
application of the BW transformation. Note that some of the
columns of E; are not BW transformed. Some column
headings of Table 4 are described below:

e # pins : number of pins of the tested module(s),

e # patterns : number of test patterns in thousands,

e Size : the size of the test set in Mbytes, (computed as
number of test patterns x number of pins x2 bits per
symbol / (8 x 105)),

e «(D) : the average activity of pins for the original
test set,

e «FE): the average activity of pins for the partially
BW transformed test set, and

e Reduction Ratio: the ratio of a(D) to a(FE).

From Table 4, the activity of the BW transformed test sets
is, on average, 86.2 times less than that of the original test
sets. The high reduction increases the efficiency of run-
length coding for a BW transformed test set £; which, in
turn, increases the efficiency of the proposed method. For
example, the reduction ratio of four test sets, P1, P5, S1, and
S2, is over 160, and the proposed method achieves a high
compression ratio for these test sets (as to be shown in the
next table). As mentioned in Section 2.3, the BW transfor-
mation is effective in reducing the activity for a sequence
with many repeating cycles. We found that a large block of
test set S1 consists of binary numbers in ascending order.
This explains the large reduction ratio for test set S1.

The next experiment we performed was to compare the
compression ratio of the proposed method with that of
six well-known compression methods, Huffman with
59,049 (=3!%) symbols [1], arithmetic coding with
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TABLE 4
The Performance of BW Transformations on Test Sets

Test . # patterns Size Reduction
Set Fpins | T01000) | (Mbytes) | D) o(E) Ratio
Al 143 20 0.68 1508.02 139.94 10.78
A2 143 15 0.51 253.35 31.22 8.11
K1 96 45 1.03 64.02 38.14 1.68
K2 96 31 0.7 2938.93 267531 1.1
K3 96 33 0.76 2704.22 1135.5 2.38
P1 33 103 0.81 4053.36 12.27 330.35
P2 89 65 1.38 57.01 14.56 3.92
P3 89 65 1.39 889.79 64.29 13.84
P4 15 842 3.01 17518.73 1793.07 9.77
P5 84 209 4.19 1315.73 7.96 165.29
P6 33 1027 8.08 4053.67 49.67 81.61
P7 89 457 9.71 88.44 21.90 4.04
P8 89 498 10.57 90.82 23.06 3.94
S1 120 33 0.94 546.73 1.52 359.69
S2 120 12 0.36 751.6 2.53 297.08
Avg 89.00 230.47 2.94 2455.63 400.73 86.24
TABLE 5
Compression Ratios of Various Compression Methods
Tseestt I\(Txo(gr)l I\;O(g;l' Huff Arith LZW LZSS |Compress | Gzip Prop.
Al 754 70.0 1.91 1.89 2.40 2.37 3.23 3.73 17.69
A2 168.9 20.8 2.26 2.26 4.99 6.87 8.29 23.78 61.77
K1 14.2 8.4 3.10 3.12 9.22 25.82 22.75 176.57 13540
K2 9574 871.6 2.38 2.40 3.88 348 6.20 9.62 3.02
K3 810.1 340.1 2.68 2.66 5.61 4.65 9.00 11.12 8.26
P1 393.6 1.2 3.74 3.76 15.50 7.21 27.09 220.07 878.68
P2 8.8 2.2 3.17 3.23 19.68 27.19 42.76 190.75 492,37
P3 136.0 9.8 2.88 2.91 10.28 11.70 19.11 104.11 117.58
P4 208.0 213 3.91 3.95 5.08 7.29 20.69 50.18 54.91
P5 62.9 0.4 3.69 3.75 17.86 22.80 73.44 23332 2377.54
P6 39.5 0.5 3.86 3.88 4295 22.22 117.37 24579 2095.79
P7 1.9 0.5 2.96 2.97 14.87 28.58 34,31 242,50 | 2044.36
P8 1.8 0.5 2.96 2.98 14.95 28.60 33.77 244121 2096.43
S1 166 0.5 3.89 3.88 6.83 10.12 10.13 12,15 1836.52
S2 603.5 2.0 3.98 3.90 5.67 7.89 9.91 11.53 502.22
Avg 288.4 90.0 3.19 3.21 12.09 1543 26.84 64.99 94.63
59,049 symbols [2], LZSS with the dictionary window e Norm. a(D)
size of 512 and the look-ahead buffer size of 256 [7], original data D X 104 (computed as the average
LZW with the dictionary size of 32K [5], Compress, and activity of pins for the original test set D / no. of test
Gzip with option —9 (which is for the best performance). patterns x107%),
For the experiments, we implemented Huffman, arithmetic, e Norm. «a(E)
LZW, and LZSS methods based on the programs available partially BW transformed data E x 1074,
in [8] and used UNIX and GNU utilities for “Compress” e Huff : Huffman method,
and “Gzip,” respectively. e  Arith. : arithmetic coding method,
Table 5 shows compression ratios achieved for the seven e LZW : Lempel-Ziv-Welch method,
different methods. Some column headings for the table are: o

NO. 5,

MAY 2002

: normalized average activity of the

: normalized average activity of the

LZSS : Lempel-Ziv-Storer-Szymanski method,
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TABLE 6
Reduction Ratio of the Download Time for the Proposed Method
e S (I:{O argg' Dgrc)zgip. Network Speed (Mb/sec)
(Kb/sec) 0.5 1 2 5 10
Al 1769 | s30100 175 e 170 162 149
A2 SL77 | 16700 0.1 8.5 555 51 194
Kl 1354 | ops0 | io7a| 1203 1082 £ 600
5 302 | ossn| 30| 3ol 50| Se| 5%
K3 | 826 sonoa|  an|  sa| w2l sl 93
P1 87868 | 13550 |  e319|  soos|  as02| 11| 1008
P2 9237 | aesso | was|  asr1|  asos|  im0s| 1033
P3 117.58 104421(5)% I 13:; 10%243t 93;1% 7(9)12 68:%
T - T
PS 57154 | 55| s | oato|  ssss|  ors4| 14
P6 200579 | 50| qiseo|  gos1|  4025|  29% 1214
p7 204436 | ge50 | inago|  ww1| st 24| 1483
P8 209643 | 5550 | eta|  oote| sms| omse| 147
S1 183652 | 5ol piasa|  sur|  sa| as74|  13ed
52 0222|0570 48| aeon| 2807|1690  to1s
Avg 94.6 398;3? 53‘3‘:2 392:4; 26;% 14(1):2 882(3)

Compress : UNIX utility “compress,”
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A lower normalized activity «(E) makes run length coding

e Gzip : GNU utility “gzip,” and

e Prop. : proposed method.

It should be noted that the average compression ratio of a
compression method given in the last row is computed as
the ratio of the total size of the entire 15 test sets before
compression to the total size of the compressed test sets by
applying the compression method.

As shown in the table, the average compression ratio of
the proposed method is 94.6, while that of the next best
method (Gzip) is 65.0. Among the conventional methods,
Gzip performs the best and Huffman coding the worst.
Huffman coding usually performs better than run-length
coding, which is employed in the proposed method. In this
case, the proposed method performed better than Huffman
coding because the benefit of the BW transformation offsets
the inefficiency of run-length coding.

As expected, the compression ratio of a test set for the
proposed method is roughly inversely proportional to the
normalized activity of the partially BW transformed data E.

more efficient, which, in turn, makes the proposed method
to achieve a higher compression ratio. The proposed
method achieves the compression ratio of over 1,800 for
five tests (P5 -P8 and S1) whose normalized activity «(F) is
below 0.5 x 107%. A low normalized activity a(FE) of a test
set is due to the low normalized activity of the original test
set a(D) (viz. P7 and P8) and/or the high reduction ratio of
the BW transformation (viz. P1, S1 and S2). In contrast, the
normalized activity «(FE) of test sets K2 and K3 is high. So
they lead to the low compression ratio for the proposed
method. We noticed that two test sets are highly random to
result in high normalized activity a(D) and low reduction
ratio for the BW transformation.

The ultimate performance of a compression method for
test data is measured in terms of the reduction of the
download time. The download time for a compressed data set
includes the data transfer time and the decompression time.
We coded the decompression algorithm in the C language,
called software decompressor, and measured the decom-
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pression speed on a workstation. In order to gauge the
capability of a dedicated hardware in reducing decom-
pression time, we also have implemented a prototype of a
dedicated hardware decompressor for the proposed
method. The hardware decompressor decompresses 16
columns in parallel and runs at 100 MHz of clock speed. It
contains about 380K equivalent 2-input NAND gates and
16 memory modules with size 128 Kbits each. It is
estimated that the hardware decompressor would reduce
the decompression speed by about 500 times compared
with the software decompressor.

Table 6 presents the reduction ratio of download time for
the proposed method computed based on (1) in Section 3.5.
The reduction ratios were obtained for five different
network speeds, 0.5, 1, 2, 5, and 10 Mbits/seconds (Mb/
sec). Column heading “Decomp.Speed (Kb/sec)” in the
table denotes the decompression speed of the two decom-
pressors, software decompressor (top item) and the hard-
ware decompressor (bottom item), in Kbits per second. The
speed of the hardware decompressor was obtained as 500
times that of the software decompressor. The top item of an
entry under heading “Network Speed (Mb/sec)” represents
the reduction ratio under the employment of the software
decompressor and the bottom entry represents the ratio for
the hardware decompressor.

The average reduction ratio of download time for
the software decompressor is 4.6 for a slow network of
0.5 Mb/sec, and the ratio is below 1.0 for the speed of
5 Mb/sec and of 10 Mb/sec. The software decom-
pressor reduces the download time only when the
network operates at the speed of 2 Mb/sec or below.
For the hardware decompressor, the average reduction is
534 for the slow network of 0.5 Mb/sec and is reduced to
82 for a high speed network of 10 Mb/sec. So a hardware
decompressor reduces download time significantly for the
considered network speeds. Considering the significant
difference in the reduction ratio between the software and
the hardware decompressors and the high cost of ATE, it
is worth employing a hardware decompressor to ATE.

The reduction ratio of the download time is increased by
increasing the compression ratio and/or the decompression
speed. A sophisticated compression method may increase
the compression ratio, but it may decrease the decompres-
sion speed to offset the benefit of the increased compression
ratio. A salient advantage of the proposed method lies in a
simple decompression algorithm which can be operated in
parallel. The algorithm leads to easy hardware implementa-
tion running in parallel. A higher decompression speed can
be achieved for the proposed method by simply increasing
the parallelism at higher hardware cost (which is insignif-
icant for ATE).

The experimental results presented above show that the
proposed method is suitable for test data compression. The
efficiency of the proposed method in compression ratio is
owing to the computationally intensive BW transformation
employed in the compression process. The proposed
method significantly reduces the download time especially
when a hardware decompressor is employed.
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Today’s variety of ASICs and decreased production volume
of individual types of ASICs requires more frequent
downloads of test data sets from workstations to automatic
test equipment (ATE). The overall throughput of an ATE is
sensitive to the download time. An efficient method to
reduce the download time is to compress the test data.

A compression algorithm for test data should meet two
requirements: It should be lossless and the decompression
should be simple. As the decompression is performed on
the ATE side, the decompression time should be minimized
to reduce the overall download time. A characteristic of test
patterns is that subsequent test patterns on the same pin are
strongly correlated, but the patterns on different pins are
weakly correlated. Most existing data compression methods
do not exploit the above characteristics and, hence, are
ineffective in test data compression.

In this paper, we presented a new test data compression
method that aims to fully utilize the unique characteristics
of test data compression. The key idea of the proposed
method is to perform the BW transformation on individual
test sequences of pins and then to apply run-length coding.
The BW transformation reduces the number of transitions
for the test sequences, which leads to a high compression
ratio for the proposed method. The BW transformation is
computationally complex, but the reverse operation is
simple. Thus, the proposed method achieves high decom-
pression speed.

The experimental results show that the proposed
compression method performs better than six other
compression methods for compressing test data. The
average compression ratio of the proposed method per-
formed on 15 test data sets is 94.6, while that for the next
best method, Gzip, is 65.0. The high compression ratio for
the proposed method reduces the download time of test
data substantially. The reduction ratio of download time is
4.6, on average, for a slow network of 0.5 Mb/sec with a
software decompressor. The ratio increases to 534 when a
hardware decompressor is employed. Overall, the proposed
method exploits the unique characteristics of test data
compression in which high decompression speed is
essential, but low compression speed is acceptable. It is
effective and suitable for compressing test data, and
reduces the download time of test data substantially.
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