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Abstract

Recent advances in Dynamic Power Management (DPM) tech-
niques have resulted in designs that support a rich set of power
management options, both at the hardware and software levels. This
has resulted in an explosion of the design space when analyzing the
system-level tradeoffs of candidate DPM strategy designs. This pa-
per proposes a design space exploration methodology based on a
high-level, multi-layered modeling framework that facilitates rapid
estimation of system-wide energy by providing the designer with a
global view of the system. The framework is based on the Extended
Finite State Machine formalism and abstracts the component power
modes, the operating environment and the DPM architecture into
interacting, concurrent layers within a single, unified model. The
modeling framework is coupled with a symbolic simulation engine
to allow for rapid traversal of the large design space. We first illus-
trate how the proposed model can be constructed by making reason-
able assumptions on the system and workload parameters, and then
we show how analysis of various candidate strategies can be per-
formed using this model. Our aim is to provide a high-level model
that can be used to quickly assess the impact of various power man-
agement decisions on the system-wide energy. The framework can
also be a formal basis for design of energy efficient power manage-
ment systems.

1 Introduction

Dynamic Power Management (DPM) [3] is a system-level power
reduction technique that manages available resources by selectively
placing some devices in low power or idle states when there is a
reduced demand for service. A typical power management system,
which we term as a DPM Architecture, consists of a set of DPM
policies and a power manager that can reside either in hardware or
the operating system (OS) [4]. The job of the power manager is to
control the power states of the power managed components (PMCs)
such that system performance requirements are guaranteed while re-
ducing power consumption. A thorough analysis of system-level
power-performance tradeoffs during the design stage itself is, thus,
an essential step to ensure an efficient DPM architecture design.
Given a target architecture and a set of candidate policies, perform-
ing such an analysis at the system-level while meeting tight con-
straints, like time-to-market, requires efficient tools that can provide

reasonably accurate estimates of the system power/performance
early in the design.

Prior research in DPM has primarily focused on policy design
and optimization for individual devices by considering them in iso-
lation [4, 12, 18,24,25]. However, in complex systems, the interac-
tion between different PMCs, their power mode dependencies, man-
agement decisions made at different levels and the system workload
are significant factors in shaping the system power profile. This
poses significant challenges when exploring system-level tradeoffs
during policy design since the power design space (i.e., the total
hardware/software decisions that affect the power profile) for such
systems can be very large. As system complexity increases, per-
forming an exhaustive traversal of this design space will likely be
the main bottleneck in implementing aggressive, holistic DPM ar-
chitectures [2,8,9,17]. In this context, there is a need of a high-level
model that can provide the designer with a system-wide view to al-
low rapid and reasonably accurate assessment of power management
decisions over this design space.

1.1 Motivation for our Modeling Framework

We motivate the need for our modeling framework by illustrat-
ing, using an example system, that existing system level models
and exploration techniques used for power—performance analysis of
DPM strategies are insufficient to handle the increasing system and
DPM architecture complexity.

Consider the system shown in Figure 1(a) which consists of the
following PMCs: a processor (CPU), hard-disk drive (HDD), dis-
play (DISPLAY) and a wireless network interface (WNIC) con-
nected by a single, shared system bus (BUS, BUS-ARBITER). Each
PMC is represented by a power state machine (PSM) [4] that models
three power modes for each device — ACTIVE, IDLE and SLEEP.
We want to analyze the system power profile for a single event —
the WNIC receiving a packet that needs to be processed by the CPU
resulting in some data to be written to the HDD. Figure 1(b) shows
the min/max power consumption of the system as the packet pro-
gresses through it. The system initially starts at the all IDLE state.
The WNIC is first activated to receive the packet followed by MEM
where the packet is buffered resulting in the activation of the BUS-
ARBITER and BUS which transfer the packet to the CPU. The CPU
becomes ACTIVE to process the packet and in turn, activates the
HDD-CONTROLLER and HDD where the data is finally written.
Each component can go to any PSM state after it has processed the
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Figure 1. Scenario that highlights the impact of the power mode inter-dependencies on the overall power profile

packet. PMCs that are not involved in this scenario (like the display)
are assumed to be in the SLEEP state. If the initial state were differ-
ent (e.g., CPU and DISPLAY were in ACTIVE) then, for the same
scenario, the power profile would be significantly different.

This experiment illustrates that in addition to the individual
power behaviors, the dependencies between the PMCs and their
interaction with their environment significantly impacts the overall
power profile. The primary motivation of our work is the lack of
system models that can capture such behavior of complex, multi-
resource, multi-tasking systems in the context of DPM and provide
means for rapid exploration of their power design space. Our aim is
to design a model with the following requirements:

e The model should provide a global, system-wide view by accu-
rately capturing the inter-dependent and concurrent operation of
PMCs, and their interaction with the system workload. This would
allow the designer to analyze the impact of any DPM decision
across the entire power design space.

e [t should be both detailed enough to provide accurate estimates,
and flexible enough to deal with non-determinism due to early and
partial design decisions, constraints and uncertainty in the work-
load information.

e [t should be sufficiently abstract to handle the diverse implemen-
tation possibilities of different DPM architectures. For example,
DPM can be either implemented in hardware [6] or as part of the
OS [8] or as part of a power-aware application [19].

e Finally, the model should support exhaustive exploration of the
power design space for analysis of system-level tradeoffs.

Existing system-level models (Figure 1(c) [5, 12, 18,25]) provide a
localized, component-centric view of each PMC and hence fail to
capture their complex interactions. Further, the power/performance
analysis in previous approaches is typically performed using actual
physical measurements [1] or simulations (trace-based [6], cycle-
accurate [26] or stochastic [5, 18]). Consequently, the entire power
design space may not be explored, significant opportunities for
power reduction may be missed and estimation accuracy can be sig-
nificantly compromised.

1.2 Overview and Contributions

To address the challenges mentioned above, we propose a mod-
eling framework that allows efficient representation, analysis and

exploration of the power design space to drive investigation of DPM
policy design tradeoffs. Our framework focuses on the following
aspects of the design exploration process - (i) abstract representa-
tion of PMCs and their workloads using the Extended Finite State
Machine (EFSM) [16] formalism, (ii) modeling of component in-
teractions and mode dependencies, (iii) platform independent mod-
eling of the target DPM architecture, and (iv) efficient simulation
to allow rapid enumeration of the power design space. To handle
the potentially large number of states, we propose the use of sym-
bolic simulation techniques that work with sets of states, specified
by their characteristic functions in the form of Binary Decision Dia-
grams (BDDs). This avoids explicit state representation and allows
use of reachability analysis techniques to exhaustively explore the
design space [28].

We apply our framework to model a complex, system-level DPM
architecture that jointly power-manages the hard disk and network
interface of a handheld, battery-powered device. We present results
of power/performance analysis of this architecture using our model
and compare our estimates with extensive trace-based simulations.
Our results demonstrate that such a high-level model can be an use-
ful design aid early in the design to allow rapid exploration and anal-
ysis of complex DPM architectures.

2 Modeling Methodology

Figure 2 illustrates the overall organization of our modeling
framework. The model abstracts the system components into mul-
tiple, interacting layers that capture the system power behavior at
different levels. These layers are termed as—(i) the Operations
Layer (OL) which models the operations performed by the system as
tasks, (ii) the resource layer (RL) which abstracts the hardware de-
vices as resources and, (iii) the Control Layer (CL) that models the
DPM policies implemented by the system as a set of rules specifed
in propositional logic. Each layer represents a specific system level
by abstracting out the functionality and considering only the impact
of its components on the system power profile. Entities in the OL
and RL are represented as concurrent, communicating EFSMs with
layer-specific state and transition semantics. Entities operate by per-
forming timed actions and communicate via instantaneous events at
each tick of a global clock signal. Events and actions are atomic
and their operation granularity depends on the chosen period of the
clock cycle. The period in turn, is bound by the simulation com-
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plexity and the degree of understanding of the system behavior at
the abstract level. In what follows, we first explain our rationale be-
hind the choice of such a framework, present details of each layer
and demonstrate how energy and delay analysis of a target DPM
architecture and its candidate policies can be efficiently performed.

2.1 Rationale

Our reasons for choosing a multi-layered, EFSM-based system
representation are as follows:

e The hardware and software layers can affect the overall power pro-
file in entirely different ways. The OL and RL layers allow the
modeling of these levels using different state and transition se-
mantics, thus providing a more accurate representation and con-
sequently, a better understanding of the components affecting the
power behavior.

e Using a separate layer to represent the DPM functions allow these
to be decoupled from the functionality of the rest of the system.
Hence, the monitoring and decision functionality of different poli-
cies can be represented and modified independently of the other
layers. This also allows different DPM policies to be plugged in
easily.

e The layered framework essentially allows decoupling of the com-
putation and communication aspects of the target system. Each
layer can be described at a different level of abstraction. This is un-
like previous models where the tight coupling of the computation
and communication causes system representation and simulation
to quickly become intractable.

e The EFSM formalism allows an efficient mapping to BDD-based
symbolic techniques which we use for design space exploration.

e Using a common formalism allows only a single concurrency
model to be used for the description of the workload as well as
the PMCs. This reduces design time and enhances productivity.

2.2 An Illustrative Example

In what follows, we explain details of the model components
using a power managed IEEE 802.11 wireless network interface
card (WNIC) operating in the infrastructure mode [14] as an illus-
trative example of a PMC. The WNIC can either operate in the Con-
tinuously Aware Mode (CAM) where it is always ON, or, the Power
Save Mode (PSM) where it is allowed to sleep periodically. With

PSM enabled, the WNIC wakes up every Beacon Interval (typically
100 ms), to listen to a traffic indication map (TIM) from a wired
access point (AP) which buffers data for the WNIC during this in-
terval. Once awake, the WNIC can go to sleep only when all the
data from the AP has been downloaded. When the mobile device it-
self has any data to send, it can wake up the WNIC without waiting
for the beacon. We demonstrate the steps to construct the OL-CL-
RL model of this PMC and illustrate how the power/performance
analysis of the PSM mode is performed using our framework.

3 Model Components
3.1 Operations Layer

The Operations Layer (OL) models the system operations or
tasks in terms of the demands that they place on the system re-
sources. Each task EFSM consists of finite task states where each
state uniquely corresponds to a set of physical parameter values that
define a specific system performance level. The set of all such values
for a task is termed as its operating point (OP) [8]. State transitions
are actions that request resources in the RL to transition to a new
OP. The OL-RL decomposition allows the actual (physical) mecha-
nism of such a change to be hidden from the high-level tasks. For
example, a OL state transition that requests {system = ACTIVE}
may actually result in a mode transition sequence in the RL like
{A = Idle, B = Active...}. OL tasks are assumed to be incommu-
nicado and require to explicitly request an OP to communicate with
each other. This allows the model to track the effect of inter-process
dependencies on the system power.

A task can have optional attributes like: (i) foreground which de-
notes a time- or system-critical task, e.g., response to some sensed
data, (ii) background which denotes a non-critical task, e.g., audio
playback, (iii) privileged— a task that can request its own OP(s), and
(iv) non-privileged—a task for which the DPM policy selects an OP.
No assumptions are made on the number or inter-arrival times of op-
erations thus allowing completely random workloads to be modeled.
Further, there are no restrictions on the interpretation of task states
as long as each state corresponds to a valid operating point. To keep
task EFSMs simple, a scheduler is assumed to resolve any resource
conflicts between tasks.

For our example, in one possible implementation, the OL may
consist of two tasks that request WNIC power mode changes—a
browser that generates HTTP requests and a AP that provides the
server responses back to the mobile device. The browser can be
modeled as a simple two-state EFSM that represents the presence
or absence of a HTTP request while the AP can consist of multiple
states that indicate the fraction of the beacon interval for which the
WNIC needs to be awake to receive buffered packets.

3.2 Resource Layer

The Resource Layer (RL) models the system PMCs as power
state machines (PSMs). Each RL state corresponds to a precharac-
terized, discrete power value and state transitions represent power
mode changes. Resources can be either non-power-managed (al-
ways ON), managed by the CL or be self-power-managed. State
transitions may incur delay and power penalties which are modeled
using additional dummy states. Communication between different
PSMs represents power mode dependencies and can constrain or
cause additional mode transitions. Hence, a mode transition due to
an OL request for a particular resource can incur additional power



and delay due to transitions in dependent PSMs. For a given cycle,
the set of all task and power mode pairs is termed as the system
operating state [8].

No assumptions are made on the number of power modes. The
low-level details about the mechanism of actual mode transitions is
abstracted away. Mode dependency information can either be ex-
plicitly specified or statically derived using algorithms such as the
one proposed by Li et al. [17]. Examples of resources include pro-
cessors that support voltage/frequency scaling, system busses, dis-
plays, HDDs etc. On-board memories are an example of a non-
power managed device. The WNIC in our example can be modeled
as a PSM with SEND, RECV, BEACON and SLEEP states.

3.3 Control Layer

The Control Layer (CL) abstracts the DPM policies as a set of
rules that are used to control the dynamic state of the system. Rules
are specified as propositional logic formulae that operate on the OL
requests and output signals that effect mode transitions in the RL.
This mapping results in a set of unique task state—operating point
pairs and the set of all such mappings for a given system configura-
tion is the system operating state. If a unique mapping is not found,
the CL stops the system and provides a trace of events that caused
such a violation.

This design of the CL was motivated by the Monitor-based Spec-
ification proposed by Shimizu et al. [23] to formally specify com-
munication protocols. This involves a monitor that is used to check
the compliance of a protocol at each execution step by observing
the signals output by two communicating agents. In the context of
our model, the CL can be viewed as a protocol that co-ordinates
the communication between two agents (the OL and RL) accord-
ing to certain rules (the DPM policy). Further, since entities in the
OL are incommunicado, our model satisfies both the separability
and independent implementability [23] constraints that are essential
for monitor-based specifications. This allows the CL to be modeled
using synthesizeable logic formulae [23] which is curcial for their
implementation in a real system. The only restriction on the CL
specification is that it must not result in deadlock, so that for every
valid state in the CL, there exist implementations of the OL and RL
which cause the CL to reach that state.

The CL also monitors the system behavior using a set of state ma-
chines termed as HISTORY and COUNTERS. HISTORY is used to
record a single event at some point in the past and COUNTERS can
record multiple such events. For the WNIC example, these can be
modeled as the BeaconCounter and TIMCounter where the former
represents the beacon interval while the latter indicates the number
of packets buffered for the WNIC at the AP. The CL models the
PSM mode by using the OL requests (browser and AP), and these
counter values, to generate the CardSleep, CardSend, CardRecv
and CardBeacon signals to control the power modes of the WNIC.

3.4 System Operation

The entire system is synchronized using a global clock that is
split into two parts: TICK1, on which the OL and RL are synchro-
nized and, TICK2, during which the CL operates. On every TICK1,
the OL generates requests that are processed by the CL at the follow-
ing TICK2 to generate signals that effect mode transitions in the RL
on the next TICK1. During this time, the CL also checks to see if all
the specified constraints are satisfied. In the case of the WNIC ex-
ample, the browser generates HTTP requests during TICK1 which

causes the CL to issue a CardSend signal to the RL on TICK2. The
WNIC then transitions to the SEND state on the next TICK1 result-
ing in a new operating state.

The model provides a system-wide view at each execution step
by building a System Power State Machine (SPSM) using the syn-
chronous composition of individual EFSMs from the OL and RL.
At each execution step, all the transitions between the OL and RL
are first explicitly resolved using the CL rules. This involves eval-
uating all the parameterized inputs and specifying each rule as a
transition function for a particular task state-operating point pair.
The effect of this step is to replace the CL by explicit transitions
between the OL and RL resulting in one EFSM for every task state-
operating point pair. Thus, for our example when the browser issues
a HTTP request, the CardSend signal generated by the CL is re-
placed by the {HTTP_REQ, SENDY} state pair. In the second step,
these EFSMs are flattened [16] into finite state machines (termed as
PSMs) each with its own transition function which is represented as
a BDD. Finally, the transition function of the SPSM, termed T Rsys
(represented as another BDD) is obtained by composing the BDDs
of individual PSMs.

Figure 3(c) illustrates the SPSM for a single execution step. Each
state in the SPSM represents a combination of all the valid task
state-operating point pairs which is nothing but the complete sys-
tem operating state. An exhaustive exploration of the SPSM can
then allow the designer to estimate the power consumption of the
entire system for the given set of CL rules. Figure 3(b) illustrates
the overall design flow of our framework.

3.5 Binding the Simulation

We use a battery model, as part of the CL, to bind the simu-
lation time horizon of the system. A fully “charged” battery is
represented by a specific number of Time Steps (TS) and battery
charge/discharge is modeled by incrementing/decrementing a fixed
value from TS every clock cycle. Rate-capacity effects are roughly
modeled by varying this fixed value depending on the task attributes.
For example, effects of foreground tasks are modeled by subtracting
a higher value from TS than the value subtracted for background
tasks. Battery re-charge can be modeled by incrementing TS during
some cycles. Once TS reaches zero, further clock ticks are disabled,
which stops the system.

4 Power and Delay Analysis
4.1 Power Computation Algorithm

Given the system PSM and an initial state, power computation
is performed by an exhaustive traversal of the SPSM states using
BDD-based symbolic simulation and adding the power for each
state. We use NuSMV [10] as the input language for our model
and CUDD [27] as the BDD package to perform the symbolic sim-
ulation. The default BDD encoding scheme by NuSMYV is used to
encode the individual PSMs and wrapper functions are used to per-
form the power computation. A snapshot of the NuSMV model for
the WNIC example is shown in Figure 4(a).

Each execution step consists of two phases. The first corresponds
to TICK1 of the clock where the task to operating point mappings
are resolved. This step results in—(i) the SPSM corresponding to the
CL decisions for this execution step, and (ii) a set of signals (e.g
A = active, B = sleep...) that represent these decisions. These
signals are provided to the symbolic simulation algorithm which



Algorithm 1: Power Computation
1 Pmin, Pmax: Power Consumed;
RS, CS: BDDs for set of states
//BDD of the SPSM
2 CS = Init(TRsys)
3 while ! FixedPoint(CS) do
//find current reachable set
RS := ComputeReachab1e(CS);
{MINgs, MAX..} := CalcPower(RS);
// min/max power

BDD

P.in == min(P,,., MINL);
max = MAX(P ... MAXS);
CS := RS;
end

4 return {P,... P..x };
//Compute Power
5 calcpPower (RS)
if Terminal(RS) then return {0,0};
//process THEN child of RS
{MIN;, MAX;} := CallcPower (THEN (RS));
for (each OP, in RS) do
MINgs := MIN; + GetDevicePower(OP);
MAXs := MAX, + GetDevicePower(OP);
end for;
//process else child of RS
{MIN., MAX_} := CcalcPower(ELSE (RS));
MINgs := min(MIN.s, MIN.);
MAXs := max(MAXgs, MAX,);
return {MIN.s, MAX_..};
end
(a) Power Computation Algorithm
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Figure 3. Power Computation, Analysis and Tool Flow using our modeling methodology

MODULE CL (Tick2, request)
ASSIGN
INIT(WNIC_send) := 0
NEXT(WNIC_send) :=
E

MODULE Browser (Tick1)
VAR

request : boolean

ASSIGN

INIT(request) := 0

NEXT(request) := request AND Ibeacon :1
(Tick1 AND {0,1})

END CASE;

MODULE Whic (Tick1, Tx, Rx)
VAR INIT(WNIC_recv) := O 15

state : {send, recv, sleep} NEXT(‘E'"N[CJQCV) =
GN

INIT(state) := sleep beacon : 1
NEXT(state) := .
CASE END CASE;

Tx : send;

MODULE BeaconCount (Tick2, start, limit)
VAR

count : 0..99;

ASSIGN
INIT(count) := 0
NEXT(count) :=

start : 1; o
count < limit : count + 1;
END CASE;

(a) The NuSMV model
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Figure 4. OL-CL-RL Model for a 802.11 WNIC in PSM Mode: NuSMV model and Power Analysis Results

computes the reachable state space starting from the initial state of
this step. Each state enumerated by the algorithm is an operating
state of the system and provides a snapshot of the power behavior
of the entire system. Thus, a trace of visited states can provide the
impact of the CL decisions on the overall system power profile for
this particular execution step. For each state, the algorithm com-
putes the power using pre-characterized power values and reports
the minimum and maximum power.

Algorithm 1 (Figure 3(a)) illustrates the steps involved in the
power computation for a given set of states. This is similar to the
method proposed by Bergamaschi and Jiang [7]. However, an im-
portant difference is that the signals required for successive exe-
cution steps are generated by our model itself rather than relying
on real input traces. If the initial state contains any don’t-cares
(due to non-determinism in the workload) a state is assigned non-
deterministically from the set of all possible initial states. If no sys-
tem inputs are specified, the simulation is akin to formal verification,
if all inputs are specified, the simulation results in a single next state.

Perfomance analysis is more challenging and highly depends on
the granularity of the clock period. This is a tradeoff between es-
timation accuracy and simulation complexity as too small a gran-
ularity can lead to explosion of the state space. Further, since our
backend tool, i.e. NuSMYV, does not support any concept of time, we
were limited in our choice of granularity to control the state space.
In Section 5.5 we discuss our plans to extend our work to handle per-
formance analysis using implicit state space traversal techniques.

4.2 Results for our Illustrative Example

The results of applying Algorithm 1 to our WNIC model are il-
lustrated in Figure 4. We compared our estimates with energy values
obtained from trace-based simulation of the PSM model designed by
Krashinsky [15] for the ns-2 network simulator. Their model con-
sists of a web-browsing mobile client, an access point and a remote
server. The randomized parameters used for HTTP traffic simula-
tion were obtained from the Berkeley Home IP traces [11]. To pro-
vide a faithful comparison, we used most of the default settings for
bandwidth and latency used in [15]. Results are reported for four
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Round-Trip Time (RTT) values (Sms, 10ms, 20ms, 40ms) (Figures
4(b), 4(c)). In the worst case, the energy estimation provided by our
model had an average error of 0.98% and a peak error of 16.56%.
We found that this discrepancy was due to the 1 ms time resolu-
tion of atomic actions that we selected in our model which caused
it to overestimate the energy values for cases where actual response
times were smaller.

5 Case Study

Since our modeling framework specifies the system at a high
level, the power and performance estimates provided by the model
must be accurate enough for the analysis to be useful. We eval-
uate the model against the following criteria: (i) accuracy of the
power and performance estimates when compared to simulation or
measurements, (ii) how easy it is to create and modify the repre-
sentation, (iii) how can larger, more complex system-level models
be constructed by composing models of individual components, (iv)
can the system-wide effects of power management decisions be es-
timated, and (v) efficiency of the framework when satisfying these
criteria. We use the Self-Tuning Power Management Architecture
(STPM) proposed by Anand et al. [1] as an example of a complex
DPM architecture and use our framework to model and analyze can-
didate DPM policies that can be implemented within STPM.

5.1 Overview of STPM [1]

STPM is based on the observation that different DPM strategies
are required for any device as their execution context changes. It is
implemented as a OS module that allows device power management
to adapt using information like application intent, base power of the
system, time and energy costs of mode transitions and user-level
power/performance preferences (termed as knobs). STPM provides
a simple interface (via the OS) that allows applications to disclose
usage hints to the underlying hardware so that the DPM strategy can
perform decisions “intelligently” [1]. Anand et al. [2] also propose
a ghost hints interface that allows applications to convey additional
hints to devices if they were in an inappropriate power mode when
it tries to access them. These hints signify “lost opportunities” on
the part of the application and are used to proactively transition the
device to the correct mode to avoid further performance penalties.

In our case study, we use STPM (Figure 5(a)) applied in the con-
text of a web browsing application that frequently uses data which
is cached on the disk to display web pages on a handheld device
(Anand et al. [2]). DPM decisions are performed as follows: if
the HDD is in standby when the browser wishes to fetch a cached
object, an adaptive Cache Manager estimates the relative time and
energy costs of fetching this object from the HDD or the network
and selects the device with a smaller cost to retrieve the object.
Consequently, for each access, the device with the higher energy
cost is allowed to remain inactive longer, thus reducing the overall
power (and possibly delay) for the entire application. Each time the
browser is forced to use the WNIC to fetch a cached object (since the
HDD was inactive), it issues a ghost hint to the HDD. After several
such hints, the HDD is proactively woken up on the assumption that
more such accesses may occur. More details can be found in [2].

5.2 Experimental Setup

We validate the estimates provided by our model against the fol-
lowing trace-based simulation setup. We extended Krashinsky’s ns-
2 PSM mode model (Section 2.2) to implement a HDD, cache man-
ager and STPM for both devices. For the WNIC, we used the power
and delay values of a Cisco Aironet 350 wireless card [2] and for the
HDD we used a 1 GB Hitachi Microdrive and a 5 GB Toshiba drive
as examples. Power and delay costs of the HDDs were characterized
using synthetic traces within DEMPSEY (Disk Energy Modeling
and Performance Simulation Environment) [29], a set of tools that
perform highly detailed stimulus-driven hard-disk simulations for
power/performance measurement of HDDs. Using DEMPSEY, we
fitted linear regression models that estimate the power and delay
of HDDs in terms of the number of blocks read/written. These re-
gression models were then used in ns-2 when estimating the HDD
time and energy costs. Network hints required by STPM such as
start and end of each network transfer and transfer sizes were ob-
tained from the cumulative density functions (CDFs) of the Berkeley
Home IP traces [11] generated by Krashinsky [15]. In the context
of the STPM architecture, the various DPM policies that we evalu-
ate include: (i) always use HDD for cached object, WNIC in CAM
mode; (ii) always use HDD, WNIC in PSM mode; (iii) always use
HDD, WNIC in PSM-ADAPTIVE mode - an adpative algorithm
that proactively transitions the WNIC to CAM if there is more than



Table 1. Design Space for different DPM Policies

. CPU Time (sec)
DPM Policy # States Ours | Simulation
Always HDD-CAM 67025 0.6 T.O.
Always HDD-PSM 150615 1.3 T.O.
Always HDD-PSM Adaptive || 322953 3.9 T.O.
Cache Manager 605815 7.3 T.O.

T.O.: Time Out after 2 min for each state

one packet for it at the AP; and, (iv) STPM with Cache Manager.

5.3 Modeling STPM

Figure 5(b) illustrates one possible OL-CL-RL model of the
STPM architecture. The OL models the workload using two EF-
SMS: a browser that non-deterministically issues a request for ei-
ther a cached or a non-cached object and an access point (AP)
EFSM similar to the one in the earlier WNIC example. Both EF-
SMs randomly assume foreground and background properties to
simulate different request characteristics. Transfer sizes for HTTP
requests and server responses were abstracted into two categories:
LARGE and SMALL using a fixed threshold over the CDFs of these
values [11]. The RL represents the WNIC and the HDD using
their PSMs. The WNIC PSM models both the CAM and PSM
modes while the HDD PSM models the Active, Performance Idle,
Low Pwr Idle and StandBy modes [13].

The CL represents STPM as a set of logic formulae that op-
erate on the application hints, device modes, power/delay infor-
mation and the application state from the OL and RL. The ap-
plication state specifies if a transfer is a foreground or back-
ground transfer and the corresponding transfer size (large or small).
For example, [(APTransfer = FGND) = (WNIC = PSM) —
(WNIC = CAM))] models a foreground transfer hinted by the AP,
which causes STPM to transition the WNIC to CAM. The history
and counter EFSMs are used to record parameters, like application
properties or number of transfers in a given time window, which
may help STPM to make a smart decision. The cache manager in
the CL is designed to use such information, in addition to the current
device power modes, to perform a time and energy cost evaluation
of any request to a cached object. The cache manager then selects
the device with the lesser cost and provides this “data access deci-
sion” to the network and HDD power managers, possibly resulting
in a mode transition decision.

5.4 Evaluation of candidate DPM Policies

We ran a web access trace from the Berkeley Home IP traces [11]
that accesses 500 unique objects over a 5 Mbps wireless link. The
HTTP requests and server responses observed when running this
trace in ns-2 were recorded and used to drive the OL EFSMs so that
a consistent comparison with the ns-2 simulations could be obtained.
Experiments were performed by varying the fraction of cached ob-
jects (35% and 50%) and user preference settings (knob = 0.0 —
performance greedy and knob = 0.5 — energy greedy). Differ-
ent policies were compared using the total energy (the power-delay
product) required by each to execute the entire trace.

Figure 6 illustrates the energy consumption comparisons be-
tween the conventional simulation and our model for the “ALWAY S
HDD” (HDD in Figure 6) and “STPM with Cache Manager” cases.
Cost00 and Cost05 in Figure 6 indicate the different user knob val-
ues for the cache manager. For the WNIC, we plot only the ACTIVE
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Figure 6. Energy Comparison between the Model and the
ns-2 Simulations
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and BEACON mode power consumption since the SLEEP mode
power dominates due to large user think times. Illustrations for the
ns-2/DEMPSEY simulations were omitted due to space constraints.
The average and peak error by our approach was 3.085%, 12.33%
for HDD and 3.954%, 13.76% for the WNIC, respectively. We have
obtained similar results in various other experiments involving other
DPM policies and more modes for each device.

Table 1 shows the worst case estimation times when perform-
ing an exhaustive traversal of the power design space. In this case,
no input traces were used, all OL state transitions were performed
non-deterministically and the RL state transitions were controlled
according to different DPM policies (Table 1-columnl). Figure
5(c) illustrates the power envelope of the two-device system due
to mode transitions. The CPU time (column 3) in Table 1 is the
time per execution step in the model, where all possible state tran-
sitions are explored from a given state. Since we are doing this
traversal symbolically, the time spent is extraordinarily short when
compared with explicit traversal via conventional simulation. All
experiments were performed on a Pentium 4 PC with 1 GB RAM
running Linux. These results indicate that our high level model can
achieve orders of magnitude speedup while accurately tracking the
system-wide energy effects of the power management decisions due
to different DPM policies. The main advantage of our model from
the designer’s point-of-view is its ability to describe, evaluate and
change the system specification at a very high level of abstraction.
If the analysis results are not satisfactory, the designer can quickly
modify the DPM policies just by changing the set of rules in the CL.

5.5 Discussion and Ideas for Future Work

A number of lessons were learned during the implementation of
our idea. We were constrained in our analysis due to the selection
of NuSMYV as our input language since an analysis such as ours im-
poses several constraints that were difficult to handle using NuSMV.
First, we found that the calculations used to perform energy and
time cost estimation enter the NuSMV model which significantly
increases the state space. Second, although state machine-based ap-
proaches have been widely used to model concurrent systems, we
would also like to explore other forms of representation that may be
more amenable to the analysis of DPM architectures. A tool that is
more specialized towards such models is more likely to meet these



challenges.

Although we have found our current framework to be sufficient
for handling a diverse set of components with a sizeable number of
power modes, we intend to study techniques to address state space
explosion to allow modeling of more complex systems at a finer
timing granularity. We also plan to study different techniques for
specification of more meaningful workload models (possibly de-
rived from actual traces) to drive the system model. This is still
ongoing work and we believe that there are multiple avenues that
can be explored by using such a framework.

6 Related Work

System-level DPM has been the subject of a large body of work
for a number of years [3,4,12]. To put our contributions in the proper
context, we focus only on formal methods for DPM in this section.
For a thorough survey of several ad-hoc techniques, the reader is
referred to [4].

Formal techniques for DPM have been used to develop strategies
that theoretically guarantee bounds on the efficiency of the DPM
architecture to achieve power reduction without degrading perfor-
mance [12]. These can be categorized into stochastic optimum con-
trol schemes [5, 18,20,22,25] and competitive analysis-based meth-
ods [21,24]. Stochastic approaches make probabilistic assumptions
about usage patterns, idle times etc. to formulate DPM as a stochas-
tic optimization problem which is solved to derive the optimal strat-
egy. However, the resulting policies are not guaranteed to be imple-
mentable [4] and the quantitative assessments performed are limited
by the assumed probability distributions. Our approach makes no
assumptions on usage patterns, workload characteristics and inter-
arrival times, but considers them implicitly using non-deterministic
transitions. Competitive analysis based techniques are used to guar-
antee that the power dissipation due to the derive policies is no more
than a certain factor of an oracle policy for a given system. However,
these techniques have only been applied to the design of component-
level policies [21,24] and their performance when applied to large
systems is unknown.

Our proposed approach takes a middle path between these for-
mal and ad-hoc techniques. We use formal models to describe the
system at a high level and then offer a method of pratically inves-
tigating system-level tradeoffs. Our work can be closely related to
the state-based system-on-chip (SOC) power analysis technique pro-
posed by Bergamaschi and Jiang [7]. They use a PSM-based ap-
proach to describe concurrent, communicating cores on a SOC and
use a BDD-based symbolic representation and algorithm to exhaus-
tively traverse the design space. We have essentially extended their
approach into a framework that is capabale modeling entire systems,
including workloads.

7 Conclusions

We presented a formal framework to represent and reason about
the system-level tradeoffs of complex systems in the context of DPM
policy design. The framework allows designers to efficiently repre-
sent both the workload and components of a system using a multi-
layered model based on EFSMs. To perform an exhaustive anal-
ysis of the impact of DPM decisions on the system-wide energy,
we coupled a BDD-based symbolic simulation engine to our model
that allows large state spaces to be efficiently traversed. We demon-
strated the efficiency of our methodology by using it to model a

highly generic and flexible OS-level DPM architecture. Our results
indicate that such a formal modeling framework can provide a ba-
sis for early analysis and exploration of more aggressive and holistic
DPM architectures to tackle the growing problem of limiting system
power consumption.
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