
Towards an Intrusion Detection System for Battery Exhaustion Attacks on

Mobile Computing Devices

Daniel C. Nash, Thomas L. Martin, Dong S. Ha, and Michael S. Hsiao

Virginia Tech, Dept. of ECE

{dnash, tlmartin, ha, hsiao}@vt.edu

Abstract

Mobile computers are subject to a unique form of denial

of service attack known as a battery exhaustion attack, in

which an attacker attempts to rapidly drain the battery of
the device. In this paper we present our first steps in the

design of an intrusion detection system for these attacks,

a system that takes into account the performance, energy,
and memory constraints of mobile computing devices.

This intrusion detection system uses several parameters,

such as CPU load and disk accesses, to estimate the
power consumption using a linear regression model,

allowing us to find the energy used on a per process

basis, and thus identifying processes that are potentially
battery exhaustion attacks.

1. Introduction

A key element in a successful pervasive computing

environment is a personal computing device that enables

the user to have continuous access to information [7].

Users’ reliance on these devices necessitates that they be

secure. One security attack that is unique to battery

powered devices is a denial of service attack aimed at

draining the battery. These “sleep deprivation torture” or

“battery exhaustion” attacks, as called by Stajano and

Anderson, prevent devices from entering normal low

power idle or sleep states [8]. Consequently, the

expected battery life of the devices is greatly reduced and

users fail to gain the full utility of the devices.

Battery exhaustion attacks are no longer theoretical.

In our previous work, we have identified and

implemented three different classes of these attacks [6]:

(1) malignant attacks, in which a virus or Trojan horse is

used to make the device consume significant power, (2)

benign attacks, in which an unmodified program is given

pathological data such that the program consumes

excessive energy, and (3) service request attacks, a

special form of the benign attack in which repeated

requests are made to a network service provided by the

device. The malignant attacks can be found using

currently available virus scanning techniques, but the

benign and service attacks cannot be detected with them

because they work on unmodified code. In addition to

our proof-of-concept implementations, there is already a

virus “in the wild” that has the properties of a battery

exhaustion attack, although its excessive power

consumption appears to have been a side effect rather

than the main intent. The Cabir virus was created to

illustrate a vulnerability in mobile devices running

Symbian OS Series 60 [9]. It transmits itself using the

Bluetooth communication protocol between devices.

While the goal of this virus writer does not appear to be

the creation of a power attack, the operation of the virus

causes one to occur. The virus causes the Bluetooth radio

on the mobile device to broadcast at frequent intervals,

seriously reducing the battery life of the device.

To combat these new attacks, a new line of defense

must be developed and put into place. We propose the

development of an intrusion detection system designed to

detect this new form of attack, subject to the performance,

memory, and energy limitations of pervasive computing

devices. Section 2 of this paper discusses the design

issues in creating such a system. Section 3 discusses the

development of one system and its effectiveness while

section 4 describes our conclusions and future work.

2. IDS Framework

The problem of intrusion detection (ID) has been

studied for several years with early papers on the subject

appearing in the later 1970s and early 1980s [3]. While

the definition of an intrusion varies slightly from paper to

paper, definitions such as the following are widely

accepted: “any set of actions that attempt to compromise

the integrity, confidentiality or availability of a resource”

[5]. An intrusion detection system (IDS) then is a system

which attempts to detect and in some cases react to

intrusions, whether on one system, a group of systems, or

a computer network.

The constraints placed upon the IDS of battery

operated devices are much more severe than those placed

on traditionally studied and commercial IDSs in existence

today. Compared to a desktop or enterprise computer

system, there are a large number of restrictions imposed

on any IDS that can be deployed on most mobile devices.

These restrictions include limited processor power,

memory, and power usage. Whereas a typical desktop

system today may have one to two gigabytes of memory,

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

a typical iPAQ has 64 megabytes of main memory

available. Likewise, while desktop systems have a large

amount of processing power available with processors

operating as high as the 3 GHz range, most mobile

devices have processors operating at just a few hundred

megahertz. A detection system implemented on these

mobile devices must have a small footprint and limit the

amount of power it consumes. Any solution to the

problem of intrusion detection and specifically to the

problem of detecting power attacks should not itself incur

a large power and performance requirement.

Methods used in commercial IDSs may be difficult, if

not impossible to implement. For instance, the extensive

audit data, in the form of system logging, collected and

analyzed by an IDS may simply not be present or may

require too much time and energy to collect. Also,

extensive analysis of this data may consume too much

power or make a system too unresponsive for a user for it

to be worthwhile. Most network IDSs also rely upon the

cooperation of several detectors to gather enough

information to cover the entire network. Most mobile

devices operate independently.

The goal of an IDS that detects power attacks must be

to identify attacks that cause the system to consume too

much energy. Although it is impossible to prevent the

attacks from using any energy, we believe the amount of

energy consumed can be mitigated. Consequently, our

goal is to try to guarantee a specific percentage of the

overall battery life of the system. If a device could

operate at idle power for 3 hours under normal usage, our

goal might be to guarantee 2 hours of operational life in

the face of repeated attacks. Given this goal, it is

necessary to know when the system has high power

consumption over a long period of time, such that the

system is in danger of not meeting the guaranteed battery

life. When the time threshold has been exceeded, we

then identify which process or processes are responsible

for using the most energy over that period of time. Such

an IDS is unique in that it can still be successful even if it

does not detect all attacks against the system. It allows

attacks through that do not cause the system to exceed its

energy consumption threshold. In that case, even though

the attacks are successful, the goal of guaranteeing a

specific battery life is still achieved.

2.1 IDS Parameters

The most straightforward way to detect a power attack

would be to measure the power on a process-by-process

basis, thus determining which processes were responsible

for consuming large amounts of energy. Unfortunately,

most, if not all, battery powered devices lack a self-

contained, high fidelity power measurement system. If

“smart battery” technology is used, rough measurements

of power consumption and remaining battery capacity can

be obtained, but these power measurements are too coarse

to provide energy consumption on a process-by-process

basis. Smart battery chips have low sampling rates, on

the order of 1 Hz. To increase accuracy in estimating the

remaining capacity, some of these chips also only report a

value for the current power dissipation rate averaged over

tens of seconds. These two properties of smart battery

chips make it difficult to use them for accurate power

measurements on a process-by-process basis.

Secondly, even if the battery operated devices of

interest had high frequency power measurement systems

available, use of such a system could leave a user

susceptible to a key cracking technique known as power

analysis [4]. For devices that perform encryption, the

energy consumption can be correlated to bits of the

encryption key, allowing an attacker to rapidly find large

portions of an encryption key. If detecting battery

exhaustion attacks requires a high resolution power

measurement system, it could make this attack possible

without requiring physical access to the device. Thus, we

desire a method of estimating power on a process-by-

process basis that does not have a high enough fidelity to

make power analysis attacks feasible.

Barring direct power measurement, it is necessary to

measure other indirect indicators of power usage on the

system. Earlier work on developing different forms of

power attacks have shown several components that can

cause significant elevated power consumption on mobile

systems [6]. Extended processor usage and repeated

wireless transmission both caused extended elevated

power levels in the devices tested. Repeated hard disk

access or causing the hard disks to spin down and up

repeatedly could also cause elevated power levels. As an

example, Figure 1 illustrates the close correlation

between processor usage and power consumption on an

IBM Thinkpad T23 running Windows 2000 Professional.

Figure 1 - CPU load (bottom) has a direct affect on

system power consumption (top).

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

3. A Power Attack IDS

3.1 Power Estimation

The correlation between CPU load and power

consumption gave rise to the idea of predicting the power

consumption of the overall system based on various

system metrics, including CPU load, disk read and write

accesses, and network transmits and receives, using a

linear regression model. Using the Microsoft

Performance Data Counters available in Microsoft

Windows NT 4.0 and later operating systems, many of

these metrics were measured on the above mentioned

system while at the same time measuring the power

consumption of the system externally. The power

measurement setup used was the same as that used in [6],

using a high-end digital multimeter capable of sampling

system current at 10,000 samples per second. The laptop

was chosen for this paper because it provided greater

flexibility in testing our fundamental ideas than would a

more limited platform such as a cell phone, but we

believe the method we describe here can be generalized

to work for any battery-powered computing system with

the appropriate choice of variables for the regression

model. The system metrics for the laptop that were

chosen to be monitored included the following:

percentage of time the processor was busy with non-idle

threads; percentage of time spent doing physical disk

reads; percentage of time spent doing physical disk

writes; the number of bytes per second doing network

receives; the number of bytes per second doing network

writes; and the number of memory-page faults per

second. Many of the other possible metrics the

Performance Data Counters monitored were tied to the

operating system itself such as the file system cache and

print queue. The selected parameters gave information

on physical devices in the system that were suspected of

influencing power consumption.

Multiple linear regression was used to find the

correlation coefficients for each of the measured metrics.

The 0 parameter encompasses the power consumption of

devices on the system such as the display, CPU fan, and

other device metrics not specifically monitored. Using

these coefficients, shown in Table 1, the following

equation was used to calculate the estimated power usage

of the system:

Equation 1 - Power estimation from system metrics.

Figure 2 compares the resulting power estimation with

the actual power measurements while Figure 3 shows the

error of the power estimation. The mean error in the

estimation is 5.67 %. Most of the large deviations occur

at the places where the power transitions are very large,

which is most likely due to difficulty in measuring the

system metrics and power usage at exactly the same time

Coefficient Value

0 11.076 W

1 0.0897 W/(% CPU load)

2 0.0207 W/(% time servicing disk

 read requests)

3 0.0126 W/(% time for disk write

 requests)

4 4.478 x 10
-6
W/(# of network bytes

 received)

5 -6.382 x 10
-5
W/(# of network bytes

 sent)

6 -4.123 x 10
-5
W/(# of memory page

 faults)

Table 1 - Multiple linear regression was used to derive

these coefficients.

Figure 2 - Comparison of power estimation (bottom)

with actual power usage (top).

Figure 3 - Error in power estimation.

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

instants. Averaging the sample would likely reduce this

error, but also hinder the ability to estimate large changes

in power usage more quickly.

Those errors, while undesirable, do not prevent the

IDS from using the power estimation. Determining the

instantaneous power of the system is not necessary. The

IDS must detect and possibly react to elevated power

consumption over the threshold discussed above as that

level of power will prevent the system from meeting its

goal. Over the time period that the IDS monitors, the

average error in the estimation is much lower, permitting

an accurate estimate of the system’s power usage.

3.2 Process Identification

With the power estimation, it can be determined when

the system has exceeded a given power threshold for an

extended period of time and the goal of guaranteeing a

certain battery life cannot be achieved. The task is then

to determine what processes are causing the increased

power consumption. While all the metrics used in

estimating the power cannot be easily determined on a

per process basis, the amount of processor usage can be.

From the linear regression, processor usage proved to be

the largest factor in power consumption. So, using the

processor usage of each process as a means of

determining its affect on overall system power usage is a

good starting point. The ratio of a process’ processor

usage to the overall system usage provides the measure

for what that process contributes to the overall system

power consumption. Such a method was used to generate

the list shown in Figure 4, which shows a power-ranked

list of all the processes running on the system when it is

under attack and when it is not. In the top figure, a

malignant power attack named “cache” is running on the

system, while in the lower figure, the system is operating

normally. The attack is clearly distinguishable.

The power estimates for each process are an average

of the power each process used over a 5 second window.

This window was chosen as a starting point to observe

long term process behavior. The size of the time window

used could be shortened to make the IDS more sensitive

to sudden increased power usage on the part of a process

or lengthened to capture longer term power increases.

The best choice for the window of time may be

dependent on what forms of attack a device is most

sensitive. Care must also be taken in selecting a window

size that will not trigger the IDS for short term power

increases caused by legitimate non-attacking programs,

called a false positive. Reducing the false positive rate is

one of the top priorities of IDS designers as a high false

positive rate hinders the ability to capture actual attacks

and may cause users to turn off the IDS system.

Estimating power consumption system wide and on a

per process basis as a detection method is well suited for

the constrained environment of mobile devices. The

computational effort is relatively low, requiring only a

few floating point operations on the collected data to

make an estimate. This is especially true when compared

to other detection methods such as signature detection,

which can require a large database of signatures and a

large number of comparisons to make a decision. The

memory footprint of the IDS, as it is currently

implemented, is also very small since it eliminates the

need to save large quantities of data.

Figure 4 – Process list for system under attack by a

virus called cache (top) and with only IDS active

(bottom).

4. Conclusions and Future Work

The proposed IDS proved to be effective in identifying

when the system has exceeded the power consumption

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

that would allow it to achieve a guaranteed battery life.

Our IDS can also identify those processes that caused the

increased load on the system. This allows a user to take a

necessary action to stop such processes from continuing

to operate. They may also allow the action to continue if

it is a process they want to continue to run, such as a

virus scanner.

Increasing the accuracy of the power estimation may

still be accomplished through measurements of other

system metrics. The cache attack program used in [6]

showed increased power consumption for cache misses

on some platforms while other platforms showed

increased power consumption for cache hits. Through

mechanisms such as Intel’s Pentium performance

counters, cache behavior could be recorded and

integrated into the power estimation.

As it stands now, the developed IDS is still vulnerable

to power attacks that distribute the work of the attack

across multiple processes. An attack that spawns

multiple processes where each process contributes to a

small portion of an overall attack before ending, would

make it difficult to isolate any process as an attack.

However, methods of determining what processes

spawned other processes are available and would make it

possible to classify the behavior of multiple processes

acting in concert. Ideally, we would like to make the IDS

resistant to this type of attack.

Making the IDS reactive to attacks instead of just

identifying them would also improve the effectiveness of

the system. In work presented in [1], system-call delays

were used to mitigate the effect of programs that were

suspected as anomalous by reducing the rate at which

they operated. A similar technique, perhaps in the way

the suspected program is scheduled by the operating

system, could be used to reduce the power consumption

of the system back to a level that would achieve the

guaranteed battery life of the system. This method could

even be adaptive to allow for more power consumption

by the system as the guaranteed battery life is neared.

Furthermore, determining the energy consumed by

each process could be used to trigger a more complex

IDS. Rather than having a more complex IDS running all

the time, and thus consuming precious energy, the

process energy estimation could serve as a first line of

defense. When the system energy consumption becomes

high enough, then the more complex IDS could be used

to analyze the system state to determine if the behavior

truly indicates an attack or is normal. An open question is

whether an IDS based on self-contained power

measurement such as we have described here can be used

to detect non-battery-related intrusions. Given the power

consuming side effects of the Cabir virus [9] and our own

experience with viruses on laptop computers, there is

good reason to believe that power consumption

information can augment existing techniques for intrusion

detection, e.g. [2].

Finally, it is necessary to develop a methodology for

determining the parameters used for the linear regression

such that power can be estimated adequately for the wide

variety of battery-powered systems that we expect will be

used in a pervasive computing environment. Our current

regression model uses disk accesses, for example, which

is not a factor for most PDAs and cell phones. This could

become part of the design process of devices, although

some allowances should be made for configurations of

individual devices (e.g., amount of memory and PCMCIA

cards).

Acknowledgements: This material is based upon

work supported by the National Science Foundation

under grant no. ANI-0219801.

References

[1] S. Forrest and A. Somayaji, “Automated Response Using

System-Call Delays,” Proceedings of the 9th USENIX

Security Symposium, pp. 185-197, August 2000.

[2] S. Forrest, S. Hofmeyr, and A. Somayaji, A. "Computer

immunology," Communications of the ACM, , October

1997, vol. 40, no. 10, pp. 88-96.

[3] A. Jones and R. Sielken, “Computer Intrusion Detection: A

Survey”, University of Virginia, Computer Science

Technical Report, 2000.

[4] P. Kocher, J. Jaffe, and B. Jun, "Differential Power

Analysis," Advances in Cryptology, Crytpo '99, Springer

LNCS 1666, pp. 388-397, 1999.

[5] W. Lee and S. Stolfo, “Data Mining Approaches to

Intrusion Detection,” Proceedings of the 7th USENIX

Security Symposium, pp. 79-94, January 1998.

[6] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-

of-Service Attacks on Battery-powered Mobile

Computers,” Second IEEE International Conference on

Pervasive Computing and Communications, pp. 309-318,

March 2004.

[7] M. Satyanarayanan, "Pervasive computing: vision and

challenges," IEEE Personal Communications, Volume: 8

Issue: 4, pp. 10 -17, Aug. 2001.

[8] F. Stajano and R. Anderson, "The resurrecting duckling:

Security issues for adhoc wireless networks," in

Proceedings of the 7th International Workshop on Security

Protocols, Lecture Notes in Computer Science volume

1796, pp. 172-194, April 1999.

[9] Symantec Corporation, “SymbOS.Cabir,”

http://securityresponse.symantec.com/avcenter/venc/data/e

poc.cabir.html.

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)

0-7695-2300-5/05 $20.00 © 2005 IEEE

