
FleXilicon: a Reconfigurable Architecture for
Multimedia and Wireless Communications

Jong-Suk Lee and Dong Sam Ha
VTVT (Virginia Tech VLSI for Telecommunications) Lab

Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, VA 24061

E-mail: {watsup, ha}@vt.edu

Abstract— This paper proposes a new reconfigurable
architecture for multi-media and wireless communications.
The proposed architecture addresses three critical design
issues with the loop level parallelism, wide memory bandwidth,
reconfigurable controller, and the support of flexible word-
length. Several major functions of multimedia and wireless
communication applications were implemented in SystemC to
estimate the performance of the proposed architecture.
Simulation results indicate that the proposed architecture
performs far better than conventional processors.

I. INTRODUCTION
Multimedia and wireless communication applications

demand high computing power, flexibility, and scalability.
The ASIC solution meets the high computing power
requirement, but is inflexible and not scalable. On the other
hand, general purpose microprocessors or DSP are flexible,
but often fail to provide sufficient computing power. Since
early 1990s, reconfigurable architectures have been proposed
as a compromise between the two extreme solutions, and
been applied for multimedia and wireless communications
[1].

Some critical loop operations in multimedia and wireless
communications usually consume a good portion of the total
execution cycles. Therefore, the key issue in implementing
multimedia or wireless algorithms onto a reconfigurable
architecture is to map critical loops into processing elements
optimally to meet the computing need. Two major
techniques for efficient execution of loops for reconfigurable
architectures are pipelining and loop level parallelism (LLP).
The pipelining technique, which is widely employed,
achieves high throughput and it does not require
reconfiguration at the clock cycle level. The LLP technique
was investigated initially for parallel computing machines
such as supercomputers and multi-processor systems, and it
simply executes loop operations concurrently with multiple
processing elements [2].

A reconfigurable architecture has evolved from fine-
grained to coarse-grained architecture [1]. This paper
concerns only coarse grained architectures due to some
major advantages such as efficient area, high performance
and low power [3]. Existing coarse-grained architectures can
be categorized into two groups, datapath-oriented and

instruction-oriented architectures, based on the types of
executions performed by underlying processing elements. A
processing element for a datapath-oriented architecture
executes only one type of operation once it is configured,
and a required dataflow is constructed by routing mesh
structured processing elements. To implement the LLP on a
datapath-oriented architecture, the body of the loop is
replicated on mesh, and multiple iterations are executed
concurrently in a pipeline manner. However, it does not lead
to high resource utilization when (1) I/Os from/to processing
elements are limited and (2) a data flow does not fit into a
given mesh topology. In addition, the degree of parallelism
in LLP is limited. REMARC [3], MATRIX [4], MorphoSys
[5], and PACT XPP [6] belong to this group.

In contrast, a processing element of an instruction-
oriented architecture performs sequence of operations, which
are defined by instructions, micro-code and/or control
signals. Instructions are stored in a configuration memory
and fetched by a controller to control the associated
processing element. As a processing element can execute the
entire body of a loop, employment of the LLP is simply to
assign multiple processing elements running concurrently.
So, an instruction-oriented architecture leads to high resource
utilization and are more suitable than the former type of
architectures for multimedia and wireless communications.
Existing reconfigurable architectures belong to this group
include RAW [7], PADDI [8], Chameleon [9], and AVISPA
[10]. Although instruction-oriented architectures are suitable
for multimedia and wireless communication applications,
there are several shortcomings for the existing reconfigurable
machines. To mitigate these problems, we propose a new
instruction-oriented reconfigurable architecture called
FleXilicon.

II. PRELIMINARIES
In this section, we present three major design issues for

instruction-oriented reconfigurable architectures, and the
proposed architecture intends to address the issues.

A. Memory bandwidth
Unlike a datapath-oriented architecture which requires

memory access at a constant rate, an instruction-oriented
architecture requires high memory accesses at certain time

4375 ISCAS 20060-7803-9390-2/06/$20.00 ©2006 IEEE

(a) Overall architecture (b) PES (c) XBSN (d) Controller

Figure 1. FleXilicon Architecture

instants. During those peak cycles, processing elements with
a limited memory bandwidth should wait until the necessary
data is available from the memory. Therefore, a wide
memory bandwidth is a critical design issue to achieve a high
degree parallelism for the LLP, which is often the bottleneck
for high performance for instruction oriented architectures.
However, existing instruction oriented architectures such as
PADDI [8], Chameleon [9], AVISPA [10] are inherently not
suitable for a wide bandwidth, since the number of
processing elements exceeds available memory I/Os. Our
architecture employs a new memory system, which
guarantees necessary operand access from local memory for
processing elements.

B. Controller design
Memory based controllers determine the type of

operation to be performed for processing elements in
instruction-oriented architectures. The sequencer of a
controller generates global instructions, which, in turn, select
VLIW-like configurable instructions from the memory to
execute multiple processing elements. Existing memory
based controllers have several shortcomings as described in
the following. First, the entry of an instruction memory is too
small in some of existing architectures (such as PADDI [8]
and Chameleon [9] which have only eight entries for the
memory). Therefore, when a single iteration requires more
than eight instructions, the instruction memory should be
reconfigured to cause serious performance degradation.
Second, controllers are localized and hence cannot be shared
among PEs, even if all PEs have the same functionality.
Finally, a memory based controller is not suitable for an
instruction pipeline control since each pipeline stage requires
access of different memory locations. Hence, it necessitates a
large size memory for super-pipeline stages. Unlike other
instruction oriented architectures, RAW [7] uses a
microprocessor as a processing element. Hence, the
instructions are fetched and decoded to execute operations as
a conventional microprocessor does, which results in area
overhead for instruction cache, instruction fetch logic and
decoder logic.

C. Sub-word parallelism
Sub-word parallelism (SWP) is a method to increase the

parallelism by partitioning the datapath into sub-word, so
that multiple sub-word data can be processed concurrently
[11]. Various algorithms in multimedia and wireless
communication applications require data with different
precisions. For example, audio algorithms usually require a
high resolution ranging from 16 bits to 24 bits, while video
algorithms from 8 bits to 16 bits. Wireless communication
algorithms have a wide range of the precision from 4 bits to
32 bits. Therefore, the SWP is effective for parallel
processing of data with various precisions in multimedia and
wireless communication applications. However, only a few
of reconfigurable architectures adopt the SWP in a limited
fashion. PADDI [8] supports 32-bit additions by
concatenating 16-bit EXU blocks. Chameleon [9] supports
two 16-bit additions and single 32-bit additions. Note that
mesh structured architectures are not suitable for the SWP
due to complex interconnections among processing elements.

III. PROPOSED RECONFIGURABLE ARCHITECTURE
In this section, we present the overall architecture of the

proposed FleXilicon, which intends to address the above
problems.

A. Overall architecture
Fig 1 (a) shows the overall architecture of FleXilicon.

FleXilicon has an array of processing elements slices (PESs),
which may be concatenated for scalability. Different outer
loops or independent multi-threads can be assigned to
different PESs. One PES consists of local memories, XBSN
(crossbar switch network), 16 PEMs (processing element and
multipliers) and a RC (reconfigurable controller). A PES is
the basic block for execution of multiple iterations of a loop
in parallel. The number of iterations of a loop which can be
executed concurrently on a PES depends on the type of the
operations. Local memories store the input and output data
streams to read from or to write onto the host processor and
PEMs. The XBSN supports various types of memory

4376

accesses and flexible word length operations. The
reconfigurable controller is responsible for generating
control signals of the local memories, the XBSN and 16
PEMs. One PEM consists of two PEs (processing elements),
two PACCs (partial accumulators), and one 9-bit multiplier,
and a PEM can perform single 8x8 MAC operations or two
8-bit ALU operations. A PE consists of three 8-bit ALUs,
three 8-bit data registers, and a status registers, and is
responsible for actual processing of data. A PE supports
various operations including ALU operations and
configurable application specific operations such as ACS
(Add Compare Select), SAD (Sum of Absolute Difference),
weighted sum and clipping operations. Other application
specific operations can be added through reconfiguration of
the datapaths of PEs, which can reduce execution cycles for
loop processing.

B. Processing Elemente Slice (PES)
Like other instruction-oriented architectures, the

proposed architecture has a 1-D array of PESs. A PES is the
basic processing unit for the LLP execution, and its structure
is shown in Figure 1 (b). To meet the peak demand on
memory access, the PES has two 16 kB (256x512) column-
less memories. The local memory has a 256-bit wide
input/output port without a column decoder, and thus it
accesses an entire row data on a single clock cycle. Sense
amplifiers are used as a register file, which loads 64 8-bit
data concurrently from the memory. To support various
types of memory accesses necessary for multimedia and
wireless communication applications and to minimize the
communication overhead among PEs, each PES includes an
XBSN as shown in Fig 1(c). An XBSN includes two 32x32
8-bit crossbar switches, so any 8-bit word of 32 operands
(fetched from a memory) can be available to each operand
register. In other words, 64 8-bit operands are fetched from
the two memories on a clock cycle and available to the two
operand registers, in turn, the 16 PEMs. So that the two PEs
of a PEM are guaranteed to receive two operands, which
addresses the peak memory access problem faced for other
existing architectures. An XBSN is a key block of the
architecture.

C. Reconfigurable controller
Our controller generates control signals for local

memories, the XBSN, and PEMs for each instruction
pipeline stage. To mitigate the problem in existing memory
based controllers explained earlier, FleXilicon employs a
reconfigurable controller which is a fine-grained LUT (look-
up table) block like an FPGA. Unlike previous memory
based controllers, the proposed controller implements for a
finite state machine (FSM) to generate control signals. Since
combinational logic in FSM can be minimized through logic
optimization technique, more functionality than the memory
based controller can be provided in given area. In addition, a
controller can be shared across multiple processing elements
through flexible implementation of a FSM, which reduces
the overall hardware complexity. Fig 1 (d) shows the
controller block, in which an address generation unit (AGU)

is a pre-designed block and generates control signals for
access of a local memory. The host processor communicates
with the controller through user registers to initiate the
controller or to retrieve the status of the controller and PESs.
The status buffer stores the status of PEMs.

D. Sub-word parallelism with flexible word-length support
FleXilicon supports flexible word-length operations –

addition/subtraction, shift, and multiplication. For
addition/subtraction operations, multiple 8-bit PEs can
simply concatenate to construct a higher precision, where
each PE configures as a carry selection adder to minimize the
critical path delay of a long word-length addition/subtraction.
For shifting operations, the XBSN provides various word-
length parallel shift operations – 8 bit, 16 bit and 32 bit. In
the XBSN, scramble multiplexer performs bit scrambling
operation so that the crossbar switch can arrange the bit
position according to shift amount, and multiple shifted data
can be obtained by de-scrambling the output of crossbar
switch. A new method is proposed to provide flexible word-
length multiplications. Since any MAC (multiplication and
accumulation) operations can be expressed with low-
precision MACs, FleXilicon provides various types of
MACs using 8x8 atomic MAC units, PEMs. The XBSN
divides multiplicands into 8-bit chunks and feeds them to
appropriate PEM units with sign extension. While this
method requires additional sum cycles for summation of
partial products, parallelized executions of multiplications
can speed up MAC operations.

IV. PERFORMANCE OF FLEXILICON
To estimate the performance of the proposed

architecture, we modeled an SOC system embedding
FleXilicon architecture using SystemC. We implemented a
Viterbi decoder, a 16x16 SAD operation in MPEG4 video, a
GSM pulse shaping filter, an MP3 cosine filter, and a DFT
block for GPS (Global Positioning System) correlation on
single PES using the SystemC model. We compared the
performance with ARM 920T, and TI 320C64xx DSP [12].

Table 1 shows simulation results for a Viterbi decoder
and a 16x16 SAD operation. Execution cycles for the Viterbi
decoder are for the update of a single stage of a state metric.
Execution cycles for the 16x16 SAD operation are for
calculation of SAD for a 16x16 macro-block. FleXilicon
reduces the number of cycles significantly for a Viterbi
decoder, by 1892 times over ARM 920T and by 94 times
over TI 320C64xx. The reduction ratio is much less for the
SAD operation, but FleXilicon is still less than the other two
platforms. Note that the speedup of FleXilicon is even more
impressive in terms of execution time.

Table II shows the comparison results for three different
filter operations. Compared to TI 320C64xx, FleXilicon
reduces the number of cycles by 4.8 times for the GSM, 2.7
times for the MP3, and 11.3 times for the GPS. The
reduction ratios are much larger over ARM 920T. In GPS,
FleXilicon requires only 0.06 cycles per single MAC

4377

TABLE I. PERFORMANCE COMPARISON I

 Viterbi decoder 16x16 SAD

 Frequency Cycles Execute
Time(us) Cycles Execute

Time(us)

FleXilicon 200 MHz 12 0.06 13 0.07

ARM 920T 200 MHz 22706 113.53 5,493 27.47

TI C64xx 600 MHz 3399 5.66 74 0.12

TABLE II. PERFORMANCE COMPARISON II

 GSM MP3 GPS

 Cycles Cycles/
MAC Cycles Cycles/

MAC Cycles Cycles/
MAC

FleXilicon 3890 0.15 4619 0.25 2565 0.06

ARM920T 181860 7.21 61417 4.44 292747 7.14

TI64xx 18589 0.74 12497 0.9 28925 0.71

TABLE III. FPGA MAPPING RESULT OF CONTROLLER

 FPGA Resource

 # logic gates Slice F/F LUT

Viterbi decoder 115.9 9 10 16

16x16 SAD 76.8 8 9 14

operation, while TI 320C64xx and ARM 920T 0.71 cycles
and 7.14 cycles, respectively.

Table III shows FPGA implementations of Viterbi and
SAD controllers. The controllers were designed in SystemC
and were synthesized and mapped into a Xilinx Virtex2
FPGA with user-defined reconfigured instructions sets and
manually designed FSM. As shown in the results, both
controllers can be implemented with around 100 gates or less
and can be mapped into FPGA only using less than 3% of
resources in the Virtex2 xc2v40 which is the smallest version
of Virtex2.

The above simulation results show the superiority of
FleXilicon architecture over conventional architectures and
the efficiency of FleXilicon for both multimedia and wireless
communication algorithms. It is important to note that the
results were obtained for single PES, and the performance
will increase in proportion to the number of PESs. Finally,
the estimated target operating frequency for FleXilicon is
200MHz in 0.18-µm CMOS process, while TI 320C64xx
DSPs were fabricated in 0.13-µm CMOS process. FleXilicon

will achieve additional speedup with a more advanced
CMOS process.

V. CONCLUSION
In this paper, we propose a new architecture, which

mitigates shortcomings of existing architectures in wide
memory bandwidth, controller and flexible word-length. A
wide bandwidth memory system enables a high degree of
loop level parallelism. The proposed reconfigurable
controller resolves the inflexibility and inefficiency of
existing memory based controllers. Flexible word-length
enhances sub-word parallelism. Several representative types
of applications were implemented, and simulation results
demonstrate the superiority and efficiency of the proposed
architecture.

REFERENCES
[1] R. Hartenstein, “A Decade of Reconfigurable Computing: a Visionary

Retrospective”, Design, Automation and Test in Europe, Conference
and Exhibition Proceedings, 2001.

[2] C.D. Polychronopoulous, et al., “Utilizing multidimensional loop
parallelism on large-scale parallel processor systems”, IEEE
Transactions on Computers, Vol. C-38, No. 9, September 1989.

[3] T. Miyamori, K. Olukotun, “A Quantative Analysis of
Reconfigurable Comprocessors for Multimedia Applications”, IEEE
Symposium on FPGA for Custom Computing Machines, April 1998,
pp. 2- 11.

[4] E. Mirsky, A. DeHon, “MATRIX: a reconfigurable computing
architecture with configurable instruction distribution and deployable
resources”, Proceedings. IEEE Symposium on FPGA for Custom
Computing Machines 1996.

[5] H. Singh, et al., “MorphoSys: An Integrated Reconfigurable System
for Data-Poarallel and Computation-Intensive Applications”, IEEE
Trans. On Computers, Vol. 49, No. 5, 2000.

[6] V. Baumagarten, et. al., “PACT XPP – a self-reconfigurable data
processing architecture”, Journal of Supercomputing, 2003, pp. 167-
184.

[7] M.B. Taylor, et al., “The Raw microprocessor: a computational fabric
for software circuits and general purpose programs”, IEEE Micro,
Vol. 22, Issue 2, March-April 2002, pp. 25-35.

[8] D.C. Chen, J.M. Rabaey, “A Reconfigurable Multiprocessor IC for
Rapid Prototyping of Algorithmic-Specific High-Speed DSP Data
Paths”, IEEE Journal of Solid-State Circuits, Vol. 27, No. 12,
December 1992, pp. 1895-1904.

[9] B. Salefski, L. Caglar, “Re-Configurable Computing in Wireless”,
Proceedings of Design Automation Conference, 2001, pp. 178-183.

[10] J. Leijten, J. Huisken, E. Waterlander, A. V. Wel, “AVISPA: A
Massively Parallel Reconfigurable Accelerator”, Proceedings of
International Symposium on System-on-Chip, 2003, pp. 165-168.

[11] J. Fridman, “Sub-word Parallelism in Digital Signal Processing”,
IEEE Signal Processing Magazine, March 2000.

[12] S. Agarwala, et al., “A 600-MHz VLIW DSP”, IEEE Journal of
Solid-state Circuits, Vol 37, No. 11, November 2002.

4378

	Main
	Welcome Messages
	Committees
	Table of Contents
	Technical Program
	Tutorials
	Keynote Talks
	Conference at a Glance
	Technical Program at a Glance
	Author Index
	Session Chair Index
	Reviewers
	CD-ROM Help
	Search
	Zoom In
	Zoom Out
	View Full Page
	Go to Previous Document

