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Abstract— This paper proposes a new reconfigurable 
architecture for multi-media and wireless communications. 
The proposed architecture addresses three critical design 
issues with the loop level parallelism, wide memory bandwidth, 
reconfigurable controller, and the support of flexible word-
length. Several major functions of multimedia and wireless 
communication applications were implemented in SystemC to 
estimate the performance of the proposed architecture. 
Simulation results indicate that the proposed architecture 
performs far better than conventional processors. 

I. INTRODUCTION 
Multimedia and wireless communication applications 

demand high computing power, flexibility, and scalability. 
The ASIC solution meets the high computing power 
requirement, but is inflexible and not scalable. On the other 
hand, general purpose microprocessors or DSP are flexible, 
but often fail to provide sufficient computing power. Since 
early 1990s, reconfigurable architectures have been proposed 
as a compromise between the two extreme solutions, and 
been applied for multimedia and wireless communications 
[1]. 

Some critical loop operations in multimedia and wireless 
communications usually consume a good portion of the total 
execution cycles. Therefore, the key issue in implementing 
multimedia or wireless algorithms onto a reconfigurable 
architecture is to map critical loops into processing elements 
optimally to meet the computing need. Two major 
techniques for efficient execution of loops for reconfigurable 
architectures are pipelining and loop level parallelism (LLP). 
The pipelining technique, which is widely employed, 
achieves high throughput and it does not require 
reconfiguration at the clock cycle level. The LLP technique 
was investigated initially for parallel computing machines 
such as supercomputers and multi-processor systems, and it 
simply executes loop operations concurrently with multiple 
processing elements [2]. 

A reconfigurable architecture has evolved from fine-
grained to coarse-grained architecture [1]. This paper 
concerns only coarse grained architectures due to some 
major advantages such as efficient area, high performance 
and low power [3]. Existing coarse-grained architectures can 
be categorized into two groups, datapath-oriented and 

instruction-oriented architectures, based on the types of 
executions performed by underlying processing elements. A 
processing element for a datapath-oriented architecture 
executes only one type of operation once it is configured, 
and a required dataflow is constructed by routing mesh 
structured processing elements. To implement the LLP on a 
datapath-oriented architecture, the body of the loop is 
replicated on mesh, and multiple iterations are executed 
concurrently in a pipeline manner. However, it does not lead 
to high resource utilization when (1) I/Os from/to processing 
elements are limited and (2) a data flow does not fit into a 
given mesh topology. In addition, the degree of parallelism 
in LLP is limited. REMARC [3], MATRIX [4], MorphoSys 
[5], and PACT XPP [6] belong to this group. 

In contrast, a processing element of an instruction-
oriented architecture performs sequence of operations, which 
are defined by instructions, micro-code and/or control 
signals. Instructions are stored in a configuration memory 
and fetched by a controller to control the associated 
processing element. As a processing element can execute the 
entire body of a loop, employment of the LLP is simply to 
assign multiple processing elements running concurrently. 
So, an instruction-oriented architecture leads to high resource 
utilization and are more suitable than the former type of 
architectures for multimedia and wireless communications. 
Existing reconfigurable architectures belong to this group 
include RAW [7], PADDI [8], Chameleon [9], and AVISPA 
[10]. Although instruction-oriented architectures are suitable 
for multimedia and wireless communication applications, 
there are several shortcomings for the existing reconfigurable 
machines. To mitigate these problems, we propose a new 
instruction-oriented reconfigurable architecture called 
FleXilicon. 

II. PRELIMINARIES 
In this section, we present three major design issues for 

instruction-oriented reconfigurable architectures, and the 
proposed architecture intends to address the issues. 

A. Memory bandwidth 
Unlike a datapath-oriented architecture which requires 

memory access at a constant rate, an instruction-oriented 
architecture requires high memory accesses at certain time 
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Figure 1.  FleXilicon Architecture 

instants. During those peak cycles, processing elements with 
a limited memory bandwidth should wait until the necessary 
data is available from the memory. Therefore, a wide 
memory bandwidth is a critical design issue to achieve a high 
degree parallelism for the LLP, which is often the bottleneck 
for high performance for instruction oriented architectures. 
However, existing instruction oriented architectures such as 
PADDI [8], Chameleon [9], AVISPA [10] are inherently not 
suitable for a wide bandwidth, since the number of 
processing elements exceeds available memory I/Os. Our 
architecture employs a new memory system, which 
guarantees necessary operand access from local memory for 
processing elements. 

B. Controller design 
Memory based controllers determine the type of 

operation to be performed for processing elements in 
instruction-oriented architectures. The sequencer of a 
controller generates global instructions, which, in turn, select 
VLIW-like configurable instructions from the memory to 
execute multiple processing elements. Existing memory 
based controllers have several shortcomings as described in 
the following. First, the entry of an instruction memory is too 
small in some of existing architectures (such as PADDI [8] 
and Chameleon [9] which have only eight entries for the 
memory). Therefore, when a single iteration requires more 
than eight instructions, the instruction memory should be 
reconfigured to cause serious performance degradation. 
Second, controllers are localized and hence cannot be shared 
among PEs, even if all PEs have the same functionality. 
Finally, a memory based controller is not suitable for an 
instruction pipeline control since each pipeline stage requires 
access of different memory locations. Hence, it necessitates a 
large size memory for super-pipeline stages. Unlike other 
instruction oriented architectures, RAW [7] uses a 
microprocessor as a processing element. Hence, the 
instructions are fetched and decoded to execute operations as 
a conventional microprocessor does, which results in area 
overhead for instruction cache, instruction fetch logic and 
decoder logic. 

C. Sub-word parallelism  
Sub-word parallelism (SWP) is a method to increase the 

parallelism by partitioning the datapath into sub-word, so 
that multiple sub-word data can be processed concurrently 
[11]. Various algorithms in multimedia and wireless 
communication applications require data with different 
precisions. For example, audio algorithms usually require a 
high resolution ranging from 16 bits to 24 bits, while video 
algorithms from 8 bits to 16 bits. Wireless communication 
algorithms have a wide range of the precision from 4 bits to 
32 bits. Therefore, the SWP is effective for parallel 
processing of data with various precisions in multimedia and 
wireless communication applications. However, only a few 
of reconfigurable architectures adopt the SWP in a limited 
fashion. PADDI [8] supports 32-bit additions by 
concatenating 16-bit EXU blocks. Chameleon [9] supports 
two 16-bit additions and single 32-bit additions. Note that 
mesh structured architectures are not suitable for the SWP 
due to complex interconnections among processing elements. 

III. PROPOSED RECONFIGURABLE ARCHITECTURE 
In this section, we present the overall architecture of the 

proposed FleXilicon, which intends to address the above 
problems. 

A. Overall architecture 
Fig 1 (a) shows the overall architecture of FleXilicon. 

FleXilicon has an array of processing elements slices (PESs), 
which may be concatenated for scalability. Different outer 
loops or independent multi-threads can be assigned to 
different PESs. One PES consists of local memories, XBSN 
(crossbar switch network), 16 PEMs (processing element and 
multipliers) and a RC (reconfigurable controller). A PES is 
the basic block for execution of multiple iterations of a loop 
in parallel. The number of iterations of a loop which can be 
executed concurrently on a PES depends on the type of the 
operations. Local memories store the input and output data 
streams to read from or to write onto the host processor and 
PEMs. The XBSN supports various types of memory 
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accesses and flexible word length operations. The 
reconfigurable controller is responsible for generating 
control signals of the local memories, the XBSN and 16 
PEMs. One PEM consists of two PEs (processing elements), 
two PACCs (partial accumulators), and one 9-bit multiplier, 
and a PEM can perform single 8x8 MAC operations or two 
8-bit ALU operations. A PE consists of three 8-bit ALUs, 
three 8-bit data registers, and a status registers, and is 
responsible for actual processing of data. A PE supports 
various operations including ALU operations and 
configurable application specific operations such as ACS 
(Add Compare Select), SAD (Sum of Absolute Difference), 
weighted sum and clipping operations. Other application 
specific operations can be added through reconfiguration of 
the datapaths of PEs, which can reduce execution cycles for 
loop processing. 

B. Processing Elemente Slice (PES) 
Like other instruction-oriented architectures, the 

proposed architecture has a 1-D array of PESs. A PES is the 
basic processing unit for the LLP execution, and its structure 
is shown in Figure 1 (b). To meet the peak demand on 
memory access, the PES has two 16 kB (256x512) column-
less memories. The local memory has a 256-bit wide 
input/output port without a column decoder, and thus it 
accesses an entire row data on a single clock cycle. Sense 
amplifiers are used as a register file, which loads 64 8-bit 
data concurrently from the memory. To support various 
types of memory accesses necessary for multimedia and 
wireless communication applications and to minimize the 
communication overhead among PEs, each PES includes an 
XBSN as shown in Fig 1(c). An XBSN includes two 32x32 
8-bit crossbar switches, so any 8-bit word of 32 operands 
(fetched from a memory) can be available to each operand 
register. In other words, 64 8-bit operands are fetched from 
the two memories on a clock cycle and available to the two 
operand registers, in turn, the 16 PEMs. So that the two PEs 
of a PEM are guaranteed to receive two operands, which 
addresses the peak memory access problem faced for other 
existing architectures. An XBSN is a key block of the 
architecture. 

C. Reconfigurable controller 
Our controller generates control signals for local 

memories, the XBSN, and PEMs for each instruction 
pipeline stage. To mitigate the problem in existing memory 
based controllers explained earlier, FleXilicon employs a 
reconfigurable controller which is a fine-grained LUT (look-
up table) block like an FPGA. Unlike previous memory 
based controllers, the proposed controller implements for a 
finite state machine (FSM) to generate control signals. Since 
combinational logic in FSM can be minimized through logic 
optimization technique, more functionality than the memory 
based controller can be provided in given area. In addition, a 
controller can be shared across multiple processing elements 
through flexible implementation of a FSM, which reduces 
the overall hardware complexity. Fig 1 (d) shows the 
controller block, in which an address generation unit (AGU) 

is a pre-designed block and generates control signals for 
access of a local memory. The host processor communicates 
with the controller through user registers to initiate the 
controller or to retrieve the status of the controller and PESs. 
The status buffer stores the status of PEMs. 

D. Sub-word parallelism with flexible word-length support 
FleXilicon supports flexible word-length operations – 

addition/subtraction, shift, and multiplication. For 
addition/subtraction operations, multiple 8-bit PEs can 
simply concatenate to construct a higher precision, where 
each PE configures as a carry selection adder to minimize the 
critical path delay of a long word-length addition/subtraction. 
For shifting operations, the XBSN provides various word-
length parallel shift operations – 8 bit, 16 bit and 32 bit. In 
the XBSN, scramble multiplexer performs bit scrambling 
operation so that the crossbar switch can arrange the bit 
position according to shift amount, and multiple shifted data 
can be obtained by de-scrambling the output of crossbar 
switch. A new method is proposed to provide flexible word-
length multiplications. Since any MAC (multiplication and 
accumulation) operations can be expressed with low-
precision MACs, FleXilicon provides various types of 
MACs using 8x8 atomic MAC units, PEMs. The XBSN 
divides multiplicands into 8-bit chunks and feeds them to 
appropriate PEM units with sign extension. While this 
method requires additional sum cycles for summation of 
partial products, parallelized executions of multiplications 
can speed up MAC operations. 

IV. PERFORMANCE OF FLEXILICON 
To estimate the performance of the proposed 

architecture, we modeled an SOC system embedding 
FleXilicon architecture using SystemC. We implemented a 
Viterbi decoder, a 16x16 SAD operation in MPEG4 video, a 
GSM pulse shaping filter, an MP3 cosine filter, and a DFT 
block for GPS (Global Positioning System) correlation on 
single PES using the SystemC model. We compared the 
performance with ARM 920T, and TI 320C64xx DSP [12].  

Table 1 shows simulation results for a Viterbi decoder 
and a 16x16 SAD operation. Execution cycles for the Viterbi 
decoder are for the update of a single stage of a state metric. 
Execution cycles for the 16x16 SAD operation are for 
calculation of SAD for a 16x16 macro-block. FleXilicon 
reduces the number of cycles significantly for a Viterbi 
decoder, by 1892 times over ARM 920T and by 94 times 
over TI 320C64xx. The reduction ratio is much less for the 
SAD operation, but FleXilicon is still less than the other two 
platforms. Note that the speedup of FleXilicon is even more 
impressive in terms of execution time. 

Table II shows the comparison results for three different 
filter operations. Compared to TI 320C64xx, FleXilicon 
reduces the number of cycles by 4.8 times for the GSM, 2.7 
times for the MP3, and 11.3 times for the GPS. The 
reduction ratios are much larger over ARM 920T. In GPS, 
FleXilicon requires only 0.06 cycles per single MAC 
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TABLE I.  PERFORMANCE COMPARISON I 

  Viterbi decoder 16x16 SAD 

 Frequency Cycles Execute 
Time(us) Cycles Execute 

Time(us) 

FleXilicon 200 MHz 12 0.06 13 0.07 

ARM 920T 200 MHz 22706 113.53 5,493 27.47 

TI C64xx 600 MHz 3399 5.66 74 0.12 

TABLE II.  PERFORMANCE COMPARISON II 

  GSM MP3 GPS 

  Cycles Cycles/ 
MAC Cycles Cycles/ 

MAC Cycles Cycles/ 
MAC 

FleXilicon  3890 0.15 4619 0.25 2565 0.06 

ARM920T 181860 7.21 61417 4.44 292747 7.14 

TI64xx  18589 0.74 12497 0.9 28925 0.71 

TABLE III.  FPGA MAPPING RESULT OF CONTROLLER  

  FPGA Resource 

 # logic gates Slice F/F LUT 

Viterbi decoder  115.9 9 10 16 

16x16 SAD 76.8 8 9 14 

 

operation, while TI 320C64xx and ARM 920T 0.71 cycles 
and 7.14 cycles, respectively. 

Table III shows FPGA implementations of Viterbi and 
SAD controllers. The controllers were designed in SystemC 
and were synthesized and mapped into a Xilinx Virtex2 
FPGA with user-defined reconfigured instructions sets and 
manually designed FSM. As shown in the results, both 
controllers can be implemented with around 100 gates or less 
and can be mapped into FPGA only using less than 3% of 
resources in the Virtex2 xc2v40 which is the smallest version 
of Virtex2. 

The above simulation results show the superiority of 
FleXilicon architecture over conventional architectures and 
the efficiency of FleXilicon for both multimedia and wireless 
communication algorithms. It is important to note that the 
results were obtained for single PES, and the performance 
will increase in proportion to the number of PESs. Finally, 
the estimated target operating frequency for FleXilicon is 
200MHz in 0.18-µm CMOS process, while TI 320C64xx 
DSPs were fabricated in 0.13-µm CMOS process. FleXilicon 

will achieve additional speedup with a more advanced 
CMOS process. 

V. CONCLUSION 
In this paper, we propose a new architecture, which 

mitigates shortcomings of existing architectures in wide 
memory bandwidth, controller and flexible word-length. A 
wide bandwidth memory system enables a high degree of 
loop level parallelism. The proposed reconfigurable 
controller resolves the inflexibility and inefficiency of 
existing memory based controllers. Flexible word-length 
enhances sub-word parallelism. Several representative types 
of applications were implemented, and simulation results 
demonstrate the superiority and efficiency of the proposed 
architecture. 
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