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Abstract—In this paper, we propose a high speed adder which 
is adopted for our reconfigurable architecture called 
FleXilicon. To support sub-word parallelism, the FleXilicon 
architecture adopts 8-bit processing units as the atomic 
operation. Hence, high speed 8-bit adders are a key building 
block necessary for high performance. The proposed adder 
intends to speed up 8-bit adder operations. It is based on a 
conventional bypass adder scheme, but bypasses 2 bits on 
every adder bit stage rather than bypassing 4 bits on every 
four bit stages for conventional bypass adders. The proposed 
adder enables high speed operation for the FleXilicon and 
maximizes sub-word parallelism. The proposed adder is 
implemented with full custom design in CMOS 65 nm process. 
Simulation results show that the proposed adder is two times 
faster than existing adders for 8 bit additions. 

I. INTRODUCTION 
We developed a reconfigurable architecture called 

FleXilicon for multimedia and wireless communication 
applications [1]. It is a coarse grained architecture, which 
provides massive parallel processing of loops. The 
FleXilicon can support flexible word-length operations, 
which can maximize the sub-word parallelism (SWP). The 
SWP is a method to increase the parallelism by partitioning a 
datapath into sub-word, so that multiple sub-word data can 
be processed concurrently [2]. Therefore, the SWP can be 
used effectively for parallel processing of the various 
precision data. To support SWP efficiently, unlike 
conventional reconfigurable architectures with 16 or 32 bits 
as the size for atomic operations, 8-bit processing units are 
used for the atomic operation for the FleXilicon architecture. 
Using up to 32 eight-bit atomic processing units, the 
FleXilicon offers highly flexible SWP. Hence, a high speed 
8-bit adder is the essential building block for high 
performance of FleXilicon. In addition, low precision adders 
are also an important building block for processors and 
ASICs, since various types of additions (such as execution 
unit, address generation unit, branch predictor, and datapath) 
often require low precision additions. It should be noted that 
VLIW architectures, SIMD architectures and multimedia 
extension hardware for microprocessors also support 
multiple low precision operations [3]-[6].  

Existing high speed adders focus on wide bit-width 
additions such as CLA (Carry Look-ahead Adder) [7], 

bypass adder [7], BK (Breton Kung) [8], PPrefix (Parallel 
Prefix) [9], whose speed improvement is rather insignificant 
for low precision additions. Further, some existing adders 
such as CLA [7] and bypass adders [7] incur substantial 
additional logic for the speed up, but the additional logic 
slows down low precision additions. Previous tree adders 
such as BK [8] and PPrefix [9] adders minimize the depth of 
logic, but it is ineffective in speeding up low precision 
additions. 

While existing adders focus on high performance for 
high precision additions, we propose a high speed adder for 
low precision additions such as 8-bit and 16-bit additions. 
The proposed adder supports high speed operation for SWP, 
which is a basic processing unit for the FleXilicon 
architecture. This paper is organized as follows. Section 2 
describes design of the proposed adder and analyzes the 
operation. Section 3 presents simulation results and 
compares the performance of the proposed adder with 
conventional adders. Section 4 draws a conclusion. 

II. PROPOSED ADDER 
In this paper, we investigated speed optimization for a 

low precision adder such as 8-bit adder and a 16-bit adder. 
To achieve high speed for a low precision adder, we propose 
a 2-bit bypass scheme one every bit stage instead of a typical 
4-bit bypass scheme on every 4 bit stages. Figure 1 shows 
our 8-bit adder based on 2-bit bypass. It is constructed with a 
HA (Half Adder) and seven FA (Full Adder) cells. A FA cell 
consists of three sub-blocks, a carry control signal block, a 
carry path block, and a summation block.  

The carry control signal block, which is the top block in 
the figure, generates signals to control the carry path circuit. 
It generates four control signals, Kill (K), Generation (GX), 
Propagation (P), and Bypass (B). A carry path block, which 
is the middle block, consists of a chain of three sub-circuits, 
a transmission gate for carry propagation, a carry 
kill/generation circuit, and a bypass circuit for a bypass. The 
summation block, i.e., the bottom block, is simply an 
Exclusive-OR gate, which generates the sum value using 
signal P and the carry.  

The transmission gate of a carry path block propagates 
(blocks) the previous carry under P=1 (P=0). The carry 
kill/generation circuit drives the carry signal path to 1 if GX 
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Figure 1: Proposed 8-bit adder 
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(a) Waveforms of carry signals (b) Waveforms of carrier and carry bypass signals 

Figure 2: Path delays of the proposed adder 

is 0 (which is “Generation” is true) and 0 if K=1 (which is 
“Kill” is true.) independent of the carry propagated from the 
transmission gate. The bypass circuit bypasses the carry 
signal for two bit stages. Signal B becomes 0 if both ppi and 
ppi-1 are 1. Under B=0, the carry ci-2 bypasses the next two 
stages, i-1 and i, and drives the carry signal ci directly. 

The proposed adder is similar to the Manchester carry-
chain adder [7], besides the proposed adder has a bypass path. 
Our bypass adder has two key differences from conventional 
bypass adders. First, our adder bypasses two bits, but the 

bypass can occur on every bit stage. Note that the bypass for 
a traditional n-bit bypass adder occurs on every n-bit stages, 
for example, ever 4 stages for a 4-bit bypass adder. The other 
difference is that a carry path and a bypass path share the 
same path in the carry path block for the proposed adder, 
while a carry path is isolated from a bypass path for 
conventional bypass adders. Sharing the same path results in 
both the pci-1 and the ci-1 signals from the stage i-1 drive 
the same carry signal node ci of the stage i. The proposed 
scheme works, as the value driven by an inverter through the 
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Figure 3 Critical path delays of 8-bit adders. 
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Figure 4: Critical path delay of multibit adders. 

signal pci-1 arrives first and overrides the signal value driven 
by a transmission gate through the ci-1. 

Figure 2 shows the waveforms of SPICE simulation for 
input A = 00000001 and input B = 11111111 with carry in 
ci=0. For those particular inputs, a carry is generated at the 
stage 0 and propagate all the way to the stage 7. The carry 
signal c0 is generated by the kill/generation circuit of the 
stage 0 and drives the carry c1 through the carry path. The 
bypath signal pc0 does not contribute the c1 value, since the 
driving inverter (with input pc0 and output c1) is disabled. 
As the result, the transition time of c1 is greater than that of 
the carry signal c0. Subsequent carry signals are bypassed by 
two bits. The carry signal c2 is bypassed from c0 through 
pc1, the carry signal c3 from c1 through pc2, and so forth. At 
the same time, those carry signals are also driven by the 
corresponding previous carry signals through the 
transmission gates of the carry path. Figure 2 (b) shows how 
the proposed bypass scheme achieves the speed up. The 
carry signal c6 driven by the signal pc5 starts to change even 
earlier than signal pc6, which is the inverted carrier signal c5. 
This means that carry propagation delay from the carrier 
signal c5 to the carrier signal c6 is less than one inverter 
delay. 

The worst case delay for the proposed n-bit adder can be 
estimated roughly using Equation (1).  

( ) ddnDelay ′′+′×−= 2                               (1) 

In the equation, n is the bit width of an n-bit adder, d′  is the 
carry propagation delay of one stage except the first two LSB 
stages, and d ′′  the carry propagation delay of the first two 
LSB stages. As shown in waveform in Figure 2 (a), the 
delays of the first two stages are much larger than the rest of 
stages. Our simulation result with a 65 nm CMOS SPICE 
model shows that the carry propagation delay of one stage 
d′  is 9.2 ps and the delay of the first two stages d ′′  is 28.9 

ps or 14.5 ps for each sage. We also noticed that the FO4 
inverter delay for the same technology is 11.5 ps. Noting the 
delay of one stage d′  is 9.2 ps, the proposed adder operates 
faster than an inverter chain with same number of stages 
except the first two LSB stages. 

III. PERFORMANCE COMPARISON 
In this section, we present comparison of performance for 

the proposed adder and existing adders such that BK (Breton 
Kung) [8], PPrefix (Parallel Prefix) [9], CLA (Carry Look-
ahead Adder) [7], and RPL (ripple carry adder). BK and 
PPrefix adder are tree adders, which minimize the depth of 
the carry path by employing parallel computation of the 
carry. The CLA uses look-ahead logics for carry generation 
which saves the propagation delay. We synthesized the BK, 
PPrefix and CLA using Synopsys DesignWare library [10] 
and implemented a RPL at a schematic level using a standard 
cell library. Critical path delays of synthesized adders were 
obtained through static timing analysis using Synopsys 
Primetime [11]. The delay of the proposed adder was 
obtained through SPICE simulation. To calibrate static 
timing analysis results with SPICE simulation results, the 
delay of the ripple carry adder was simulated in both 
methods and compared the results each other to obtain a 
calibration factor. 

Figure 3 shows critical path delays of various types of 8 
bit adders in a CMOS 65 nm technology under the supply 
voltage of 1.3 V and the temperature of 100 C. The delay of 
the proposed adder is only 84 ps and the smallest among the 
five adders compared, while the delays of the other adders lie 
in the range of 167 ps to 188 ps. The speedup of the 
proposed adder over other types is about two times, which 
contributes the high speed operation for the FleXilicon. 

To construct a larger adder using the proposed bypass 
adder, we can simply concatenate multiple FA (Full Adder) 
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units. Figure 4 shows simulation results of larger adders, up 
to 64 bits, constructed of the proposed FA units, and the 
results are compared with that of a PPrefix adder. As shown 
in the figure, the proposed adder achieves higher 
performance than the PPrefix adder for 8-bit and 16-bit 
adders, but the proposed adder performs worse beyond the 
size. As shown in the graph, the delay of the proposed adder 
increases linearly with the increase of the bit-width, which 
confirms the validity of Equation (1). It should be noted that 
the depth of the carry path of a PPrefix adder increases in a 
logarithm scale. 

IV. CONCLUSION 
In this paper, we proposed a high speed adder which is 

adopted to support sub-word parallelism for our FleXilicon 
architecture. The proposed adder intends to speed up 8-bit 
adder operations. It is based on a conventional bypass adder 
scheme, but bypasses 2 bits on every adder bit stage rather 
than bypassing 4 bits on every four bit stages for 
conventional bypass adders. The proposed adder is 
implemented with full custom design in CMOS 65 nm 
process. Simulation results show that the proposed adder is 
two times faster than existing adders for 8 bit additions and 
performs better than a PPrefix adder up to 16 bits. It is also 
possible for a hybrid implementation of our adders with 

other types of adders to improve the speed for higher 
precision additions. 
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