
High Speed 1-bit Bypass Adder Design
for Low Precision Additions

Jong-Suk Lee and Dong Sam Ha
VTVT (Virginia Tech VLSI for Telecommunications) Lab

Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, VA 24061

E-mail: {watsup, ha}@vt.edu

Abstract—In this paper, we propose a high speed adder which
is adopted for our reconfigurable architecture called
FleXilicon. To support sub-word parallelism, the FleXilicon
architecture adopts 8-bit processing units as the atomic
operation. Hence, high speed 8-bit adders are a key building
block necessary for high performance. The proposed adder
intends to speed up 8-bit adder operations. It is based on a
conventional bypass adder scheme, but bypasses 2 bits on
every adder bit stage rather than bypassing 4 bits on every
four bit stages for conventional bypass adders. The proposed
adder enables high speed operation for the FleXilicon and
maximizes sub-word parallelism. The proposed adder is
implemented with full custom design in CMOS 65 nm process.
Simulation results show that the proposed adder is two times
faster than existing adders for 8 bit additions.

I. INTRODUCTION
We developed a reconfigurable architecture called

FleXilicon for multimedia and wireless communication
applications [1]. It is a coarse grained architecture, which
provides massive parallel processing of loops. The
FleXilicon can support flexible word-length operations,
which can maximize the sub-word parallelism (SWP). The
SWP is a method to increase the parallelism by partitioning a
datapath into sub-word, so that multiple sub-word data can
be processed concurrently [2]. Therefore, the SWP can be
used effectively for parallel processing of the various
precision data. To support SWP efficiently, unlike
conventional reconfigurable architectures with 16 or 32 bits
as the size for atomic operations, 8-bit processing units are
used for the atomic operation for the FleXilicon architecture.
Using up to 32 eight-bit atomic processing units, the
FleXilicon offers highly flexible SWP. Hence, a high speed
8-bit adder is the essential building block for high
performance of FleXilicon. In addition, low precision adders
are also an important building block for processors and
ASICs, since various types of additions (such as execution
unit, address generation unit, branch predictor, and datapath)
often require low precision additions. It should be noted that
VLIW architectures, SIMD architectures and multimedia
extension hardware for microprocessors also support
multiple low precision operations [3]-[6].

Existing high speed adders focus on wide bit-width
additions such as CLA (Carry Look-ahead Adder) [7],

bypass adder [7], BK (Breton Kung) [8], PPrefix (Parallel
Prefix) [9], whose speed improvement is rather insignificant
for low precision additions. Further, some existing adders
such as CLA [7] and bypass adders [7] incur substantial
additional logic for the speed up, but the additional logic
slows down low precision additions. Previous tree adders
such as BK [8] and PPrefix [9] adders minimize the depth of
logic, but it is ineffective in speeding up low precision
additions.

While existing adders focus on high performance for
high precision additions, we propose a high speed adder for
low precision additions such as 8-bit and 16-bit additions.
The proposed adder supports high speed operation for SWP,
which is a basic processing unit for the FleXilicon
architecture. This paper is organized as follows. Section 2
describes design of the proposed adder and analyzes the
operation. Section 3 presents simulation results and
compares the performance of the proposed adder with
conventional adders. Section 4 draws a conclusion.

II. PROPOSED ADDER
In this paper, we investigated speed optimization for a

low precision adder such as 8-bit adder and a 16-bit adder.
To achieve high speed for a low precision adder, we propose
a 2-bit bypass scheme one every bit stage instead of a typical
4-bit bypass scheme on every 4 bit stages. Figure 1 shows
our 8-bit adder based on 2-bit bypass. It is constructed with a
HA (Half Adder) and seven FA (Full Adder) cells. A FA cell
consists of three sub-blocks, a carry control signal block, a
carry path block, and a summation block.

The carry control signal block, which is the top block in
the figure, generates signals to control the carry path circuit.
It generates four control signals, Kill (K), Generation (GX),
Propagation (P), and Bypass (B). A carry path block, which
is the middle block, consists of a chain of three sub-circuits,
a transmission gate for carry propagation, a carry
kill/generation circuit, and a bypass circuit for a bypass. The
summation block, i.e., the bottom block, is simply an
Exclusive-OR gate, which generates the sum value using
signal P and the carry.

The transmission gate of a carry path block propagates
(blocks) the previous carry under P=1 (P=0). The carry
kill/generation circuit drives the carry signal path to 1 if GX

10931-4244-0921-7/07 $25.00 © 2007 IEEE.

Figure 1: Proposed 8-bit adder

0.00

0.50

1.00

1.50

0.00E+00 5.00E-11 1.00E-10 1.50E-10

TIME

c0

c1

c2

c3

c4

c5

c6

a[0]

dout[7]

0.00

0.50

1.00

1.50

5.00E-11 1.00E-10 1.50E-10

TIME

c6

pc6

c5

pc5

(a) Waveforms of carry signals (b) Waveforms of carrier and carry bypass signals

Figure 2: Path delays of the proposed adder

is 0 (which is “Generation” is true) and 0 if K=1 (which is
“Kill” is true.) independent of the carry propagated from the
transmission gate. The bypass circuit bypasses the carry
signal for two bit stages. Signal B becomes 0 if both ppi and
ppi-1 are 1. Under B=0, the carry ci-2 bypasses the next two
stages, i-1 and i, and drives the carry signal ci directly.

The proposed adder is similar to the Manchester carry-
chain adder [7], besides the proposed adder has a bypass path.
Our bypass adder has two key differences from conventional
bypass adders. First, our adder bypasses two bits, but the

bypass can occur on every bit stage. Note that the bypass for
a traditional n-bit bypass adder occurs on every n-bit stages,
for example, ever 4 stages for a 4-bit bypass adder. The other
difference is that a carry path and a bypass path share the
same path in the carry path block for the proposed adder,
while a carry path is isolated from a bypass path for
conventional bypass adders. Sharing the same path results in
both the pci-1 and the ci-1 signals from the stage i-1 drive
the same carry signal node ci of the stage i. The proposed
scheme works, as the value driven by an inverter through the

1094

172 170 167

188

84

0

50

100

150

200

RPL CLA BK Pprefix Proposed

D
el

ay
(p

s)

Figure 3 Critical path delays of 8-bit adders.

0

100

200

300

400

500

600

700

8 16 24 32 40 48 56 64

Bitwidth(bits)

D
el

ay
(p

s)

Pprefix

Proposed

Figure 4: Critical path delay of multibit adders.

signal pci-1 arrives first and overrides the signal value driven
by a transmission gate through the ci-1.

Figure 2 shows the waveforms of SPICE simulation for
input A = 00000001 and input B = 11111111 with carry in
ci=0. For those particular inputs, a carry is generated at the
stage 0 and propagate all the way to the stage 7. The carry
signal c0 is generated by the kill/generation circuit of the
stage 0 and drives the carry c1 through the carry path. The
bypath signal pc0 does not contribute the c1 value, since the
driving inverter (with input pc0 and output c1) is disabled.
As the result, the transition time of c1 is greater than that of
the carry signal c0. Subsequent carry signals are bypassed by
two bits. The carry signal c2 is bypassed from c0 through
pc1, the carry signal c3 from c1 through pc2, and so forth. At
the same time, those carry signals are also driven by the
corresponding previous carry signals through the
transmission gates of the carry path. Figure 2 (b) shows how
the proposed bypass scheme achieves the speed up. The
carry signal c6 driven by the signal pc5 starts to change even
earlier than signal pc6, which is the inverted carrier signal c5.
This means that carry propagation delay from the carrier
signal c5 to the carrier signal c6 is less than one inverter
delay.

The worst case delay for the proposed n-bit adder can be
estimated roughly using Equation (1).

() ddnDelay ′′+′×−= 2 (1)

In the equation, n is the bit width of an n-bit adder, d′ is the
carry propagation delay of one stage except the first two LSB
stages, and d ′′ the carry propagation delay of the first two
LSB stages. As shown in waveform in Figure 2 (a), the
delays of the first two stages are much larger than the rest of
stages. Our simulation result with a 65 nm CMOS SPICE
model shows that the carry propagation delay of one stage
d′ is 9.2 ps and the delay of the first two stages d ′′ is 28.9

ps or 14.5 ps for each sage. We also noticed that the FO4
inverter delay for the same technology is 11.5 ps. Noting the
delay of one stage d′ is 9.2 ps, the proposed adder operates
faster than an inverter chain with same number of stages
except the first two LSB stages.

III. PERFORMANCE COMPARISON
In this section, we present comparison of performance for

the proposed adder and existing adders such that BK (Breton
Kung) [8], PPrefix (Parallel Prefix) [9], CLA (Carry Look-
ahead Adder) [7], and RPL (ripple carry adder). BK and
PPrefix adder are tree adders, which minimize the depth of
the carry path by employing parallel computation of the
carry. The CLA uses look-ahead logics for carry generation
which saves the propagation delay. We synthesized the BK,
PPrefix and CLA using Synopsys DesignWare library [10]
and implemented a RPL at a schematic level using a standard
cell library. Critical path delays of synthesized adders were
obtained through static timing analysis using Synopsys
Primetime [11]. The delay of the proposed adder was
obtained through SPICE simulation. To calibrate static
timing analysis results with SPICE simulation results, the
delay of the ripple carry adder was simulated in both
methods and compared the results each other to obtain a
calibration factor.

Figure 3 shows critical path delays of various types of 8
bit adders in a CMOS 65 nm technology under the supply
voltage of 1.3 V and the temperature of 100 C. The delay of
the proposed adder is only 84 ps and the smallest among the
five adders compared, while the delays of the other adders lie
in the range of 167 ps to 188 ps. The speedup of the
proposed adder over other types is about two times, which
contributes the high speed operation for the FleXilicon.

To construct a larger adder using the proposed bypass
adder, we can simply concatenate multiple FA (Full Adder)

1095

units. Figure 4 shows simulation results of larger adders, up
to 64 bits, constructed of the proposed FA units, and the
results are compared with that of a PPrefix adder. As shown
in the figure, the proposed adder achieves higher
performance than the PPrefix adder for 8-bit and 16-bit
adders, but the proposed adder performs worse beyond the
size. As shown in the graph, the delay of the proposed adder
increases linearly with the increase of the bit-width, which
confirms the validity of Equation (1). It should be noted that
the depth of the carry path of a PPrefix adder increases in a
logarithm scale.

IV. CONCLUSION
In this paper, we proposed a high speed adder which is

adopted to support sub-word parallelism for our FleXilicon
architecture. The proposed adder intends to speed up 8-bit
adder operations. It is based on a conventional bypass adder
scheme, but bypasses 2 bits on every adder bit stage rather
than bypassing 4 bits on every four bit stages for
conventional bypass adders. The proposed adder is
implemented with full custom design in CMOS 65 nm
process. Simulation results show that the proposed adder is
two times faster than existing adders for 8 bit additions and
performs better than a PPrefix adder up to 16 bits. It is also
possible for a hybrid implementation of our adders with

other types of adders to improve the speed for higher
precision additions.

V. REFERENCES
[1] J-S. Lee, D.S. Ha, “FleXilicon: a Reconfigurable Architecture for

Multimedia and Wireless Communications”, International Symp.
Circuits and Systems, May. 2006, pp. 4375-4378.

[2] J. Fridman, “Sub-word Parallelism in Digital Signal Processing”,
IEEE Signal Processing Magazine, Mar. 2000.

[3] S. Agarwala, et al., “A 600-MHz VLIW DSP”, IEEE Journal of
Solid-state Circuits, Vol 37, No. 11, November 2002.

[4] D.A. Draper and et. al., “An X86 microprocessor with multimedia
extensions”, IEEE International Solid-State Circuits Conference, Feb.
1997, pp. 172-173.

[5] S. Oberman, G. Favor, and F. Weber, “AMD 3D Now! Technology:
architecture and implementations,” IEEE Micro, vol. 19 Apr. 1999,
pp. 37-48.

[6] R.B. Lee, A. M. Fiskiran, and A. Bubshait, “Multimedia instructions
in IA-64”, Proc. Int. Conf. Multimedia Expo, Aug. 2001.

[7] N.H.E Weste, K. Eshraghan, Principles of CMOS VLSI Design,
Addison Wesley, 1993.

[8] R.P. Brent and H.T. Kung, “A Regular Layout for Parallel Adders”,
IEEE Trans. Computers, Vol. 31, Mar. 1982, pp. 260-264.

[9] G. Dimitrakopoulos, D. Nikolos, “High-Speed Parallel-Prefix VLSI
Ling Addres”, IEEE Trans. Computers, Vol. 54, No. 2, Feb. 2005, pp
225-231.

[10] DesignWare library User’s Guide, Available: http://www.synop-
sys.com/

[11] PrimeTime User’ Guide, Available: http://www.synopsys.com/

1096

