
Abstract— A feasibility study of frequency domain ADCs for 
an Impulse-UWB receiver is presented. A frequency domain ADC 
consists of a bank of narrow band bandpass filters and 
integrators, followed by a conventional ADC. The filter bank 
produces the ‘spectrum samples’ (Fourier series coefficients) at 
frequencies corresponding to the center frequencies of the 
bandpass filters in the filter bank. The Fourier series coefficients 
are sampled and quantized by a conventional time domain ADC. 
In the baseband of the I-UWB receiver, the digitized Fourier 
series coefficients can be processed in the frequency domain or the 
pulse can be reconstructed and processed in the time domain. 
Sampling in the frequency domain, avoids the need for an ADC 
with a wide bandwidth and a high sampling rate for an I-UWB 
receiver. Simulation results on a mathematical model of a 
frequency domain ADC show that spacing the center frequencies 
of the bandpass filters at 200 MHz over the band of interest leads 
to a pulse reconstruction error of ~ 10% for a 5-bit ADC. Practical 
implementation issues in integrated circuit realization of the 
frequency domain ADC are described as well.  

Index Terms— ADC, Filter bank, Impulse UWB, Receiver 
Architectures  

I. INTRODUCTION 
When compared to the traditional narrow band 

communication systems, ultra wideband (UWB) technology has 
several advantages such as high data rate, low-radiated power, 
excellent immunity to multipaths, and simple hardware. UWB 
suits many applications such as wireless home networking, 
sensor network communications, and through-the-walls 
sensing. Realization of UWB systems in CMOS technology is 
highly desirable for most UWB applications, but it poses a great 
challenge for VLSI designers. There are two main flavors of 
UWB systems, carrier-based (MB-OFDM and DS-CDMA) and 
impulse-based (I-UWB).  

Integrated circuit realization of I-UWB transceivers in 
CMOS places extremely high requirements on the RF front end 
and the data converters [1]. The challenge stems from the fact 
that I-UWB is based on extremely narrow pulses which require 
high-speed and wide bandwidth circuits for sampling and 
reconstruction of extremely narrow pulses. Existing CMOS 
analog-to-digital converters (ADCs) cannot meet the sampling 
rate necessary for sampling of these UWB pulses. In addition to 
the high sampling rate, timing jitter makes precise control of 
sampling time intractable. Many different techniques have been 
proposed for implementing high speed ADCs viz. the 
time-interleaved ADCs [2], using bandpass filters to divide the 
band of interest into several sub-bands and digitizing signals in 
the sub bands [3]. To ease the requirements on the ADC, analog 
to digital conversion in the frequency domain has been proposed 

by the author’s group [4] [5] first and then by Hoyos et. al [6] 
[7], independently.  

Although, there are some parallels with our approach and the 
approach proposed in [6], the hardware implementations are 
vastly different. The method proposed in [6] uses mixers 
followed by integrators. The method requires several clock 
generators, is power hungry and also has noise issues.  In our 
approach, we use narrow band bandpass filters and integrators 
to extract the Fourier series coefficients at frequencies 
corresponding to the center frequencies of the bandpass filters. 
The extracted Fourier series coefficients are digitized using an 
ADC for further digital signal processing. The digitized Fourier 
series coefficients then can be processed in the frequency 
domain or the signal can be reconstructed in the time domain by 
performing an Inverse Fast Fourier Transform (IFFT) on the 
Fourier series coefficients and then processed in the time 
domain. Instead of mixers and multiple clock generators, 
adoption of filters makes our architecture highly suitable for 
integrated implementations of I-UWB transceivers.  The 
sampling rate of the conventional ADC employed in the 
frequency domain ADC is independent of the frequency content 
of the impulse used for modulating the data and is limited only 
by the data rate and the number of bandpass filters. In this work, 
we explore the tradeoffs between the number of bandpass filters 
and the resolution of the ADC through simulations. Some of 
practical implementation issues of the filter banks in integrated 
circuits are also discussed.   

The rest of the paper is organized as follows. Section II 
reviews signal analysis in the frequency domain and the overall 
architecture of the frequency domain ADC. Section III describes 
the simulation study of the frequency domain ADC. The 
trade-offs between the number of filters and the resolution of the 
time-domain ADC are studied by calculating the pulse 
reconstruction error.  Section IV discusses practical issues in 
implementing the frequency domain ADC. Section V concludes 
the paper.  

II. PRELIMINARIES  
This section reviews the theory behind extraction of Fourier 

series coefficients from the time domain signals using bandpass 
filters and the architecture of the frequency domain ADC. 

A. Signal Analysis in the Frequency Domain  
A continuous time periodic signal with a period Tp can be 

expressed as  
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where F0 = 1/Tp is the fundamental frequency of the signal x(t), 
and a Fourier series coefficient ck represents the spectral 
component of the signal [8]. Note that ck’s are usually complex 
values, and ck and c-k are complex conjugate. The period Tp is 
the observation window of the received signal, which is often a 
fraction of the data rate or Pulse Repetition Interval (PRI). 
Observe that  ck’s can be calculated by multiplying the time 
domain signals with sinusoidal signals and integrating the result 
over a time period Tp. Direct  implementation of (2) requires 
multiple clock generators, mixers and integrators as shown in 
[6][7]. 

 Noting that 
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characteristics of a sinusoidal function, (2) leads to the relation 
given in (3).  
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where k is integer and ‘*’ is the convolution operation.  
Noting, 
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Where { }L  represents the Laplace transform of x(t). (3) can be 
expressed as following.  
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where X(s) is the Laplace transform of x(t). Our proposed 
implementation of frequency domain ADC which calculates 
and quantizes ck’s is based on (4).  

Fig. 1 shows (4) in a block diagram form. The block 
representing the transfer function 2
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as a narrow band bandpass filter by observing that the transfer 
function of a bandpass filter is represented by 
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[9]. Where the parameter Q is defined as in (5)  
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where 0kω is the center frequency of the bandpass filter and 
dB3ω∆ is the bandwidth of the filter. The term ‘Q factor’ often 

occurs in filter specifications as it defines the relationship of 
filter’s bandwidth to its center frequency. It can be noted that as 
the bandwidth goes down and the center frequency 0kω  
increases, Q factor increases. Extremely narrow bandwidth 

filters are sometimes called ‘infinite Q’ filters [12]. We’ll 
follow similar terminology in the rest of the paper.  The block 

with the transfer function s
k 0ω

represents an ideal integrator, 

with a pole at DC.   
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Figure 1: Fourier series coefficient sampler 

The output of the ‘infinite Q’ bandpass filter sampled at Tp 
gives the real part of the Fourier series coefficient ck. The output 
of the ‘infinite’ Q bandpass filter integrated by an ideal 
integrator with a gain of 0ωk and sampled at Tp gives the 
imaginary part of the Fourier series coefficient ck. Implications 
for realization of these blocks in integrated circuits will be 
discussed in section IV. 

B. Frequency Domain ADC 
Consider a train of pulses at a receiver as shown in Figure 2. 

Our goal is to obtain sampled values of the individual pulses 
using an ADC. Let τ0 be the observation window of each pulse 
and T is the PRI. Assume that pulses require over-sampling by a 
factor of N. The conventional method, which over-samples a 
pulse by factor of N during τ0 with a single ADC, requires the 
ADC to sample at a rate of N/τ0. For example, the sampling rate 
is an impractical 32 GHz for N=8 and τ0 = 250 ps.  

 
Fig. 2: Received input pulses 

The architecture of the frequency domain ADC is given in 
Fig. 3. The received signal x(t) is applied to a bank of filter 
structures shown in Fig. 1. The center frequencies of the 
‘infinite Q’ bandpass filters are spaced equally within the band 
of interest used for I-UWB communications. The filter bank 
outputs the Fourier series coefficients ck’s corresponding to the 
center frequencies of the bandpass filters. The output of the 
filters are sampled at the end of the observation period  τ0. A 
single ADC sweeps through the filter back outputs from 2*N 
sample and holds once every T seconds, where N is the number 
of filters in the filter bank and T is the PRI. Sampled Fourier 
series coefficients are then digitized by a conventional ADC. 
The digitized fourier series coefficients can be processed in the 



frequency domain for a fully frequency domain I-UWB receiver 
or the original pulse can be reconstructed by performing IFFT  
on the Fourier series coefficients and then the time domain 
samples of the pulse can be processed.  

 
Fig. 3: Frequency domain ADC architecture 

III. SIMULATION RESULTS WITH IDEAL FILTER BANKS 
This section describes the simulation setup for evaluation of 

our frequency domain ADC and impact of the number of filters 
and the ADC resolution on the pulse reconstruction.  

A. Simulation Setup  
In order to verify the performance of the frequency domain 

ADC, we modeled equation (4) in Matlab. The input pulse was a 
Gaussian mono-pulse. The lower band of UWB 
communications (3 - 5 GHz band) was chosen for simulations. 
The pulse was band-limited to 3-5 GHz with a 128-tap Ramez 
digital filter.  The band-limited pulse was normalized to have a 
Vp-p of 1 V and is shown in Fig. 4. 
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Fig. 4:  Band-limited pulse (3-5 GHz band) 

The center frequency of the bandpass filters was spaced 
equally in the 3-5 GHz band. The number of filters for 
corresponding frequency spacing in the 3-5 GHz band is shown 
in Table I. For example, a frequency spacing of 100 MHz in the 
3-5 GHz band corresponds to 2 GHz/100 MHz +1 = 21 filters 
because the frequencies at the band edges viz. 3 GHz and 5 GHz 
have to be covered as well.  The spectral components 
corresponding to other frequencies are filled with zeroes to 
reconstruct the entire spectrum with the effective target 

sampling rate of 20 GHz. The effective sampling rate can be 
increased (decreased) by increasing (decreasing) the number of 
zeros. For example, consider 500 MHz frequency spacing with 5 
filter banks. To meet a target sampling rate of 20 GHz, 21 
samples (10GHz/500MHz + 1) are required to reconstruct the 
frequency spectrum from DC (0 Hz) to half the sampling rate 
(10 GHz). Thus, 5 zeros are inserted to cover the spectrum from 
0 to 2.5 GHz followed by 5 frequency samples obtained from 
the frequency domain ADC in the band from 3 GHz to 5 GHz 
and then 11 zeros are inserted to cover the spectrum from 5.5 
GHz to 10 GHz.  

TABLE I.  NUMBER OF FILTERS VS. FREQUENCY SPACING 

Frequency Spacing  
(MHz) Number  of Filter Banks  

500 5 
400 6 
300 7 
200 11 
100 21 

 
The frequency spectrum samples or the Fourier series 

coefficients output by the filter bank are then digitized by an 
ADC modeled in Matlab. The IFFT operation is performed on 
the quantized spectrum samples and the reconstructed frequency 
spectrum. The pulse and reconstruction error are illustrated in 
Fig. 5 for two different combinations of number of filters and 
ADC resolutions. 
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5a: Reconstructed Pulse 5c: Reconstructed Pulse 
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5b: Reconstruction Error 5d: Reconstruction Error 

Fig. 5: Reconstructed pulse and error  

The reconstructed pulse is shown in Fig. 5a when the filter 
bank had 21 filters and the ADC resolution was 8. The error 
between the original pulse and the reconstructed pulse is shown 
in Fig. 5b. From the two figures, one can observe that this case 
corresponds to the near-perfect reconstruction with the 
maximum reconstruction error being less than 0.01.  The 
reconstruction error increases as the number of filters is 



decreased and as the resolution of the ADC is decreased. Figure 
5c shows the reconstructed pulse for 5 filters and ADC 
resolution of 5 bits. The reconstructed pulse in this case deviates 
largely from the original pulse and the maximum reconstruction 
error is 0.4 for an input pulse with Vp-p of 1.    

In order to quantify the reconstruction error, we defined a 
parameter called the RMS Error Percentage (RMSEP) given by 
(6).  
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B. Impact of number of filters and the ADC resolution 
The variation of the RMSEP for different number of filters 

and the ADC resolution is shown in Fig. 6. The number of filters 
is determined by the frequency spacing of the center frequencies 
of the bandpass filters (∆F). The reconstruction error curves for 
different numbers of filters follows the similar trend. As the 
number of filters decreases, the error percentage increases. The 
biggest increase is observed when the frequency spacing is 
changed form 100 MHz to 200 MHz. Note that in this case, the 
number of filters is halved from 21 to 11. The increase in error 
percentage is more gradual as the number of filters is decreased 
and as the spacing between center frequencies of filters is 
increased.  
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Fig. 6:  Reconstruction Error vs. ADC resolution  

An interesting trend observed is that the RMSEP pretty 
much saturates around 5 bits of ADC resolution except for the 
case when ∆F = 100 MHz. Therefore, we conclude that an ADC 
resolution of 5 bits is sufficient for minimum reconstruction 
error from the frequency domain ADC.  Also, we noted in 
section 2.2, that the sampling rate of this conventional ADC is 
only a fraction of the PRI (determined by the number of filters to 
be sampled).  For example, for a PRI of 50 ns and 11 filters, the 

sampling rate for the conventional ADC is 440 MHz9

2 11
50 10−

×
=

× , 
which is easily realizable with current CMOS technologies. 
Further, a 5-bit, 440 MHz ADC will only consume a small 
fraction of the overall frequency domain ADC’s power.   

For the case when ∆F = 100 MHz, the error percentage 
decreases significantly as the ADC resolution increases and 
saturates around 7 bits. However, when ∆F = 100 MHz, we need 
21 filters and RMSEP of the order of 2% corresponds to near 
perfect reconstruction as shown in Fig. 5a which may not be 
required in every application. We conclude that an optimal filter 
spacing would be ∆F = 200 MHz (11 filters for our band of 
interest) and an ADC resolution of 5 bits.  

IV. PRACTICAL FILTER BANK DESIGN ISSUES  
A practical implementation of the filter structure given in Fig. 

1 is shown in Fig. 7. The ‘infinite Q’ bandpass filter shown in 
Fig. 1 is replaced by a conventional bandpass filter with the 

transfer function
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, but Q in this case is assumed 

to be very high. So that, the overall transfer function tends to be 
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 as in Fig. 1. Filter structures for implementing 

infinite Q filters have been studied nearly two decades ago [12] 
and these structures can be used for implementing infinite Q 
filters without having to reinvent the wheel. Implementing, an 
ideally ‘infinite Q’ filters has practical limitations, however, 
these structures can readily achieve very high Q factors (of the 
order of 200~300). Since the unity gain frequency (fT) of the 
current CMOS technologies are in the order of 200 GHz [13], 
bandpass filters with center frequencies in the GHz range can 
be easily realized. In order to counter the extreme process 
variations in deep submicron technologies, the filter center 
frequency and the bandwidth must be tunable. 
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Fig. 7: Practical implementation of a Fourier series coefficient sampler 
 

The ideal integrator s
k 0ω

in Fig. 1 is replaced with a practical 

integrator 
p

0

s1
k

ω+
ω

. A pole at DC would require infinite output 

impedance. However, output impedances in the order of MΩs 
can be obtained with current CMOS technologies operating at 
very low voltages through cascoding or gain-boosting 
techniques [14]. The gain in the numerator 0kω corresponds to 
the center frequency of the bandpass filter. For our case, since 
the band of interest is from 3 to 5 GHz, the required amplifier 
gain will also be in this range i.e. 3 x 109– 5 x109. Open loop 
gains of CMOS op-amps are usually in the range of 105 [15] so 
the gains of this range can be obtained by cascading open loop 
op-amps. The main issue is to maintain the stability of the 
amplifier when operating at such high gains as well as the 
variability of the gain.  Again, some tunability should be 



introduced into the integrator gain, to counter the process 
variations.  

V. CONCLUSION 
A simulation study of the frequency domain ADC for 

sampling I-UWB signals is presented. For the simulation study, 
the pulse is reconstructed from the spectrum samples and the 
reconstruction error is calculated. Optimum spacing of the 
center frequencies of the filter banks and the resolution of the 
ADC is determined by considering hardware complexity and an 
acceptable pulse reconstruction error. Although the ideal 
integrator and ‘infinite Q’ bandpass filter may not be realizable 
in practice, circuits that realize ‘nearly infinite Q’ filters as well 
as ‘nearly ideal’ integrators have been investigated previously, 
and some of these structures can be reused. Based on our 
simulations and investigation on the practical implementation 
issues, we conclude that frequency domain sampling ADCs 
provide a means for processing narrow pulses for I-UWB 
transceivers without relying on extremely high sampling rates 
and a large number of bits. 
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