
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009 1021

FleXilicon Architecture and Its VLSI Implementation
Jong-Suk Lee and Dong Sam Ha, Fellow, IEEE

Abstract—In this paper, we present a new coarse-grained re-
configurable architecture called FleXilicon for multimedia and
wireless communications, which improves resource utilization
and achieves a high degree of loop level parallelism (LLP). The
proposed architecture mitigates major shortcomings with existing
architectures through wider memory bandwidth, reconfigurable
controller, and flexible word-length support. VLSI implementa-
tion of FleXilicon indicates that the proposed pipeline architecture
can achieve a high speed operation up to 1 GHz using 65-nm
SOI CMOS process with moderate silicon area. To estimate the
performance of FleXilicon, we modeled the processor in SystemC
and implemented five different types of applications commonly
used in wireless communications and multimedia applications
and compared its performance with an ARM processor and a
TI digital signal processor. The simulation results indicate that
FleXilicon reduces the number of clock cycles and increases the
speed for all five applications. The reduction and speedup ratios
are as large as two orders of magnitude for some applications.

Index Terms—Array processing, loop-level parallelism, reconfig-
urable architecture, system-on-chip (SOC).

I. INTRODUCTION

M ULTIMEDIA and wireless communication applications
demand high computing power, flexibility, and scala-

bility. An application-specific integrated circuit (ASIC) solu-
tion would meet the high computing power requirement, but
is inflexible and not scalable. On the other hand, general pur-
pose microprocessors or digital signal processing (DSP) chips
are flexible, but often fail to provide sufficient computing power.
Various processor architectures such as VLIW or vector proces-
sors have been introduced to increase the computing power, but
the computing power is still insufficient or the architectures are
too power hungry or expensive in silicon. Since early 1990’s, re-
configurable architectures have been proposed as a compromise
between the two extreme solutions, and been applied for multi-
media and wireless communication applications as surveyed in
[1] and [2]. Reconfigurable architectures are flexible and scal-
able and can provide reasonably high computing power, and
hence they are suitable for multimedia and wireless communi-
cation applications.

A reconfigurable architecture has evolved from the logic-
level fabric to the processing-level fabric [1], [2]. The logic level
fabric is a fine grained architecture, in which logic level circuits
are mapped into configurable lookup tables (LUTs) and routing.
In contrast, the processing level fabric is a coarse grained ar-
chitecture, which incorporates predesigned processing elements

Manuscript received August 25, 2007; revised March 09, 2008. First pub-
lished May 02, 2009; current version published July 22, 2009.

The authors are with Virginia Polytechnic Institute and State University,
Blacksburg, VA 24130 USA (e-mail: watsup@vt.edu; ha@vt.edu).

Digital Object Identifier 10.1109/TVLSI.2009.2017440

such as adders, multipliers, shifters, and logical units as building
blocks. The processing-level fabric has several advantages over
the logic-level fabric such as efficient area, high performance,
and low power, but it suffers from low flexibility and inefficiency
at bit-level operations [2], [3]. This paper concerns only coarse
grained architectures due to those reasons.

Some critical loop operations such as discrete cosine trans-
form and motion estimation for multimedia applications and
filter operations, equalization operations in wireless communi-
cation applications usually consume a good portion of the total
execution cycles. The key issue in implementing multimedia
or wireless algorithms onto a reconfigurable architecture is to
map critical loops into processing elements optimally to meet
the computing need. Two major techniques for efficient execu-
tion of loops for reconfigurable architectures are pipelining and
loop level parallelism (LLP). The pipelining technique, which
is widely employed for coarse-grained reconfigurable architec-
ture, achieves high throughput. Several compilers are available
to generate a pipelined datapath from a given data flow graph
and to map the pipelined datapath onto processing elements
[4]–[9]. The LLP technique was investigated initially for par-
allel computing machines such as supercomputers and multipro-
cessor systems, and it executes multiple iterations concurrently
in a loop with multiple processors [10]–[12]. The LLP can be
a good technique for mapping a loop into a reconfigurable ar-
chitecture, since it achieves a significant speedup with a large
number of processing elements.

While various types of classifications for coarse grained ar-
chitectures were made in previous papers [1], [2], [13], we cat-
egorize existing coarse grained architectures into two groups,
datapath-oriented and instruction-oriented, based on the type
of instructions performed by underlying processing elements.
A processing element for a datapath-oriented architecture exe-
cutes only one type of operation once it is configured, and a re-
quired dataflow is constructed by routing necessary processing
elements.

A datapath-oriented architecture usually has mesh-struc-
tured processing elements, and the architecture is suitable for
mapping loops into a pipelined datapath, which achieves high
throughput. However, in general, the architecture results in
low resource utilization. Several existing architectures such as
MATRIX [14], REMARC [15], MorphoSys [16], and PactXPP
[17] belong to this group. To implement the LLP on a data-
path-oriented architecture, the body of the loop is replicated on
a mesh, and multiple iterations are executed concurrently using
hybrid of both pipelining and LLP techniques. This scheme
is employed for Chameleon architecture presented in [22].
However, low resource utilization still remains as problematic
because of large redundancy introduced during the mapping.

In contrast, a processing element of an instruction-oriented
architecture performs a sequence of operations, which are de-
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fined by instructions, microcodes, and/or control signals. In-
structions are stored in a configuration memory and fetched by a
controller to control the processing element. As a processing el-
ement can execute the entire body of a loop, the LLP is simply to
assign multiple processing elements running concurrently. Ex-
isting reconfigurable architectures belong to this group include
RAW [18], PADDI [19], Chameleon [20], and AVISPA [21]. We
consider an instruction-oriented architecture in this paper due to
high resource utilization.

Although instruction-oriented architectures offer higher
resource utilization compared with data-oriented architectures,
there are three major shortcomings for existing reconfigurable
machines. First, since the LLP increases simultaneous memory
access linearly to the number of parallel operations, existing
machines suffer from shortage of available memory bandwidth.
It is usually the limiting factor for high performance. Second,
since the reconfiguration capacity of a controller should be
set for the largest loop body, it results in large overhead and
performance degradation for existing architectures. Finally, the
number of processing elements should be sufficiently large to
achieve a high degree of parallelism in the LLP. To mitigate
the problems, we propose a new instruction-oriented reconfig-
urable architecture called FleXilicon [23]. FleXilicon increases
the memory bandwidth with employment of a crossbar switch
network (XBSN). FleXilicon adopts a reconfigurable con-
troller, which reduces the overhead associated with execution
of instructions. In addition, flexible word-length operations for
FleXilicon increase the sub-word parallelism (SWP) [24].

This paper is organized as follows. Section II describes a
resource utilization issue in the LLP and shortcomings with
existing architectures. Section III presents the proposed recon-
figurable architecture and explains how the shortcomings are
addressed in the proposed architecture. We also describe VLSI
implementation of the architecture. Section IV presents simula-
tion results and compares the performance of the proposed ar-
chitecture with conventional processors. Section V draws some
conclusions on the proposed architecture. Finally, it should be
noted that this paper is an extension of an earlier and brief ver-
sion presented in [23].

II. PRELIMINARY

In this section, we discuss resource utilization of existing ar-
chitectures and critical design issues considered in developing
our architecture.

A. Resource Utilization

Resource utilization is a key factor to achieve high perfor-
mance for reconfigurable architectures, and it can serve as a
key metric to decide an appropriate architecture type. As cat-
egorized earlier, two different types of existing architectures
such that datapath-oriented and instruction-oriented architec-
tures have different resource utilization depending on the mech-
anism to execute loops. Consider an example loop in Fig. 1.
Fig. 1(a) shows an example pseudo code for a simple N iter-
ative loop. The loop body of the code can be transformed to five
operations as shown in Fig. 1(b). Fig. 1(c) shows a transformed
data flow graph (DFG) of the loop body, which can be mapped
to processing elements.

Fig. 1. Example loop and a data flow graph of its loop body. (a) Pseudo code
of the N iterative loop. (b) Operation assignment results. (c) DFG of the loop
body.

Fig. 2 shows a mapping of the DFG in Fig. 1 onto an 8 8
mesh datapath oriented architecture, which employs pipelining
and the LLP. In this mapping, we assume that a processing ele-
ment (PE) has four possible connections with its neighbor PEs.
Each PE is configured as a required operator, and interconnec-
tions are configured to form the datapath flow. Note that delay
elements are necessary for the pipelining. Fig. 2(a) indicates
the case where input/outputs (I/Os) are available only at the
boundary of the mesh. Most PEs are idle during the operation,
and some of them are assigned simply as delay elements to pro-
vide interconnections to the I/O bus. Note that PEs usually do
not have large memory to store temporary results of loop cal-
culations. Further, only two iterations can be mapped onto the
mesh due to lack of available input ports, and hence the degree
of the LLP is two. Only 10 PEs out of 64 PEs are used for ac-
tual processing to result in 15.6% of resource utilization. When
an unlimited number of I/Os are available as shown in Fig. 2(b),
the degree of parallelism increases to eight, and the resource uti-
lization to 62.5%. Note that an unlimited I/O accessibility alone
does not guarantee high resource utilization because of the mis-
matches between a mesh structure and the DFG of a loop body.
In addition, severe reconfiguration overhead incurs if the size of
a DFG exceeds the size of a given mesh. For some applications
such as infinite-impulse response (IIR)/finite-impulse response
(FIR) filters, the datapath oriented architecture can be a better
choice provided a DFG matches with the mesh structure.

Fig. 3 illustrates the LLP for execution of loops on an instruc-
tion oriented architecture with unlimited I/Os, in which opera-
tions of a loop are executed on the same PE sequentially, and
multiple iterations are executed concurrently on different PEs.
In contrast to datapath oriented architectures, high resource uti-
lization is achieved for instruction oriented architectures as long
as the number of iterations of a loop exceeds the number of
available PEs, and it is usually the case for our target applica-
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Fig. 2. Mapping onto a datapath oriented architecture (a) with limited I/Os and (b) with unlimited I/Os.

Fig. 3. LLP for an instruction oriented architecture with unlimited I/Os.

tions. Therefore, instruction oriented architectures offer higher
resource utilization and hence better performance than datapath
oriented architectures. However, existing instruction oriented
architectures does not exploit the full potential of the LLP due
to several limitations as described in the following subsection.

B. Design Issues

There are three major design issues, memory bandwidth, con-
troller design, and sub-word parallelism, in the LLP for instruc-
tion oriented architectures.

1) Memory Bandwidth: An instruction oriented architecture
has a higher demand on simultaneous peak memory access than
a datapath oriented architecture. For examples, the instruction
oriented architecture in Fig. 3 requires 128 input and 64 output
memory accesses at certain peak times, while the datapath
oriented architecture in Fig. 2 requires 48 input and 8 output
memory accesses constantly. PEs with a limited memory
bandwidth should wait at certain peak cycles until necessary
data is available from the memory. Therefore, wide memory

bandwidth is a critical design issue to realize high degree
parallelism for the LLP. However, existing instruction oriented
architectures fail to provide sufficient memory bandwidth to
maximize the LLP. To name a few, Chameleon [20] provides
configurable memory access up to 128 bits, which is insuffi-
cient for seven 32-bit PEs. PADDI [19] uses a crossbar switch
to provide non-conflict connections among PEs, but it has a
limited memory access capability. The memory system for the
proposed architecture provides guaranteed operand access from
local memories to PEs, which maximizes the LLP.

2) Controller Design: A memory-based controller de-
termines the operations of PEs for a conventional instruction
oriented architecture. A sequencer generates global instructions,
which, in turn, select VLIW-like instructions of a reconfigured
memory. These memory based controllers have several prob-
lems as described next. First, the size of an instruction memory
is typically small such as eight entries for Chameleon [20]
and PADDI [19]. If single iteration requires a larger number
of instructions than supported by the instruction memory, the
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instruction memory should be reconfigured. It causes a severe
degradation of the performance. To support a larger number
of instructions, the memory size should be increased, which
results in large area overhead and configuration time over-
head of the controller. Second, to share a localized controller
among PEs, it needs multiplexers and demultiplexers, which
complicates the design as well as large silicon area, hence
independent controllers are required even when all PEs have
the same functionality. Third, a memory-based controller is not
suitable for control of instruction pipelines, as each pipeline
stage requires different memory locations. Hence, it necessi-
tates a large size memory for super-pipeline stages. Finally, to
process branches or control flows, a sequencer should operate
at a higher frequency than PEs, which might limit the operating
frequency of the PEs.

PADDI [19] uses an external sequencer as a global controller
which generates 3-bit global instructions. The global instruction
points eight different nano-store memories, which contain eight
53-bit VLIW instructions. Similarly, Chameleon [20] has a con-
trol logic unit (CLU), which consists of a PLA for finite state
machine and selects eight-word instruction memory to control
datapath units (DPUs). AVISPA [21] has VLIW-like controllers
and a configuration memory. Unlike other instruction oriented
architectures, RAW [18] uses a microprocessor as a PE. Hence,
instructions are fetched and decoded to execute operations like
a conventional microprocessor. As the result, the area overhead
for instruction cache, instruction fetch logic and decoder logic
is high.

3) Sub-Word Parallelism: Algorithms in multimedia and
wireless communication applications require various precisions
of data. For example, audio algorithms generally require high
precision ranging from 16 bits to 24 bits. An 8-bit to 16-bit
resolution is common for video algorithms. A wide range of
precisions from 4 to 32 bits are used for wireless communi-
cation algorithms. Sub-word parallelism (SWP) is a method
to increase the parallelism by partitioning a datapath into
sub-words, so that multiple sub-word data can be processed
concurrently [24]. Therefore, the SWP can be used effectively
for parallel processing of the various precision data in multi-
media and wireless communication applications.

Only a few of reconfigurable architectures adopt SWP in
a limited manner. PADDI [19] supports 32-bit additions by
concatenating two 16-bit execution units (EXUs). Chameleon
[20] supports two 16-bit additions and single 32-bit additions in
DPU. In addition, Chameleon provides two types of multipli-
cations, 16 24 and 16 16, without the benefit of increased
parallelism. Note that none of mesh structured architectures
supports the SWP since additional interconnections among PEs
is very costly.

III. PROPOSED RECONFIGURABLE ARCHITECTURE

Our proposed reconfigurable architecture FleXilicon intends
to provide massive parallel processing of loops for multimedia
and wireless communication applications. FleXilicon is in-
tended for use as a coprocessor attached to a host processor,
as it is optimized for data dominated loop operations rather
than control dominated operations (which are suitable for a
general purposed processor). Typically, FleXilicon performs

only critical loop operations, while the host processor handles
remaining tasks. Also, the host processor is responsible for
managing FleXilicon through its control registers. In this
section, we describe the overall architecture of FleXilicon and
then our schemes to address shortcomings of exiting instruction
oriented architectures.

A. Overall Architecture

FleXilicon has an array of processing element slices
(PESs), where is scalable. A PES is the basic block for the
LLP and consists of an array of processing elements, which
enables execution of multiple iterations of a loop in parallel. It
is also feasible to allocate different outer loops or simultaneous
multi-threads to different multiple PESs. A PES is connected
to only its neighbor PESs for easy scalability and to a host
processor through a high-speed system bus.

Fig. 4 shows the overall architecture of FleXilicon. One PES
consists of two local memories, an XBSN (Crossbar Switch Net-
work), 16 processing element and multipliers (PEMs), and a re-
configurable controller (RC). The number of operations that can
be executed simultaneously on 16 PEMs depends on the type of
the operation such as 32 8-bit arithmetic logic unit (ALU) op-
erations and 16 8 8 multiplications. The local memories pro-
vide storages for I/O data streams to be read/written by the host
processor and for temporary data for the PES and other neigh-
boring PESs. The XBSN provides various types of memory ac-
cesses and flexible word length operations. The reconfigurable
controller is responsible for generating control signals for the
local memories, the XBSN, and the 16 PEMs.

One PEM can perform single 8 8 multiply and accumulate
(MAC) operation and two 8-bit ALU operations, and it consists
of two PEs, two partial accumulators (PACCs), and one 9 9
multiplier. A PE consists of three 8-bit ALUs, five 8-bit data
registers, a status register, and a carry controller. The state reg-
ister stores four different kinds of states—negative, overflow,
zero, and carry according to the execution result of ALUs. The
values of the status register are transmitted to the reconfigurable
controller, so that the controller switches the state of the state
machine based on the execution results. To support multiple
word operations, the carry controller propagates the carry from
the previous stage. To protect results from overflows or under-
flows during accumulations, two PACCs may be configured as
a 16-bit accumulator for iterative single 16-bit accumulations
or two 8-bit accumulators for two independent 8-bit PE opera-
tions. A PE supports various operations including general ALU
operations such as addition, subtraction, logic operation, and
configurable application specific operations such as add com-
pare select (ACS), sum of absolute difference (SAD), weighted
sum, and clipping operation. Other application specific opera-
tions may be added to a PE by configuring the datapath of the
PE. These configurable operations reduce the number of clock
cycles for loop processing when implementing algorithms of
wireless communications and multimedia applications.

B. Processing Element Slice (PES)

As noted above, a PES is the basic processing unit for the LLP,
and its structure is shown in Fig. 5. To provide enough memory
bandwidth for the LLP, a PES has two 16 kB (512 entries with
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Fig. 4. Overall architecture of FleXilicon.

Fig. 5. Structure of a PES.

256-bit each) memories. Two independent addresses index two
256-bit data of the two local memories. Through the XBSN,
two operand registers fetch 512-bit operand data to be executed
by 16 PEMs. The XBSN includes two 32 32 8-bit crossbar
switches, so any 8-bit word among 32 operands can be fetched
to any operand register.

A local memory has 256-bit wide dual I/O ports (two ports
for read and two ports for write), which enable simultaneous
read/write accesses for the host processor and for PEMs within
the PES and/or those for neighboring PESs. The memory system
enables a fetch of 64 8-bit operand data in single clock cycle,
equivalently, two operand data for each PE, under any oper-
ating condition. Hence, it meets the peak demand for memory

Fig. 6. Instruction pipeline stages. (a) PE operation. (b) Multiplication opera-
tion. (c) MAC operation. (d) Multi-cycle PE operation.

access during loop executions. Since the versatility of memory
access is an important factor to support various types of algo-
rithms in multimedia and wireless communication applications
and to minimize the communication overhead among PEs, the
XBSN provides various types of memory accesses including
broadcasting and butterfly access. Versatile memory accesses
enable efficient execution of various algorithms which requires
complex memory accesses during loop executions.

There are two writing channels for local memories. The first
one is for the external memory access, which is multiplexed with
a neighboring PES and a host processor. The second one is a
dedicated channel for local PEMs. 16 PEMs generate 64 bytes
(4 bytes for each PEM including 2 byte accumulation data), and
they are transferred to either local memories directly without
data alignment or operand registers with data alignment through
XBSN.

Fig. 6 shows a few configurable instruction pipeline stages
for a PES. LD is the first pipeline stage, where 512-bit data
are loaded from the local memory to sense amplifiers. XBSN
is the operand fetch stage through the XBSN, PE is the execu-
tion stage, MULT is the multiplication stage, and ST is memory
write stage. Fig. 6(d) is the case when multiple clock cycles are
required for the execution stage.
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Fig. 7. Structure of a controller.

C. Reconfigurable Controller

The controller of a PES generates appropriate control signals
for instruction pipeline stages—LD, XBSN, MULT, PE, and ST.
Fig. 7 shows the structure of an LUT-based controller, which
consists of LUTs, user programmable registers (called user reg-
isters), an address generation unit (AGU), a control signal gen-
eration datapath, and a status data buffer. The host processor
communicates with the controller through user registers to ini-
tiate the controller or to retrieve the status of the controller and
the PES. The status data buffer stores the values of the status reg-
isters in PEs, which can be transferred to the local memories.

To mitigate the shortcomings of existing memory-based con-
trollers, the proposed controller adopts a fine-grained recon-
figuration like an FPGA. Unlike previous memory-based con-
trollers, the proposed controller maps combinational logic onto
LUTs and employs high speed predesigned datapaths to gen-
erate control signals. The complexity of the proposed controller
is, in general, simpler than existing memory-based ones, since
it supports only required operations of the loop, not all possible
functionality of a PE. Further, while mapping the controller onto
LUTs, conventional logic optimization techniques can be ap-
plied for logic minimization. Additionally, a controller can be
shared across multiple PESs to exploit the benefit of the LLP.

The current configuration of controller has 128 CLBs with
1024 LUTs and 1024 F/Fs, which is equivalent to a Xilinx
Virtex2 xc2v80 [37]. The configuration stream is transferred
through the system bus from the host. The maximum size of
the configuration bits for the controller including LUTs, and
the mapping memory is 73.64 kB, and the reconfiguration time
is around 37.7 us assuming the system bus speed of 1 GB/s
(32-bit at 250 MHz).

The AGU, consisting of four address registers and three ad-
dress generation adders, is a predesigned block responsible for
generation of control signals for local memory access. The con-
trol signal generation datapath provides generation and remap-
ping of control signals for the XBSN and the PEMs. A hybrid of
a datapath scheme and a mapping memory scheme are adopted

Fig. 8. Structure of an XBSN.

for an XBSN block, since it requires complicated calculations
for generating control signals (such as for shift and rotate op-
erations) and needs to store frequently used configurations in
the mapping memory. Some PEM control signals are gener-
ated from the datapath, while others are simply fetched from
the mapping memory or bypassed from the LUT. Our sophisti-
cated controller, when compared to existing memory based con-
trollers which simply store configurations of datapaths, leads to
more versatile functionality and potentially higher speed oper-
ations for the same controller area.

D. SWP With Flexible Word-Length Support

FleXilicon embedding the proposed XBSN supports flexible
word-length operations such as shift, MAC, and addition/sub-
traction, which leads to a high degree of SWP. The proposed
XBSN as shown in Fig. 8 consists of multiple sets of mul-
tiplexers, which provide various dataflow paths. The XBSN
supports multiple various word length shift operations, specif-
ically 8-, 16-, and 32-bit shifts. Fig. 9 illustrates one-bit
arithmetic shift right operations using scrambling multiplexers
(SC MUXs) and a 32 32 8-bit crossbar switch. An SC MUX
performs a bit scrambling operation, which produces 8-bit
words by collecting corresponding bits from the operands. For
example, all LSBs of the operands
are packed into a single word. The XBSN performs a neces-
sary shift or rotate operation, and the result is passed to the
descrambling multiplexer SC MUX. The scrambled data are
descrambled to restore the original bit ordering. Scramble
and descramble multiplexers with incorporation of a crossbar
switch eliminate the need for multiple barrel shifters to save
the area. It also provides multiple flexible word-length shift
operations, which is not feasible with a conventional barrel
shifter.

Various reconfigurable multiplication and MAC architectures
have been published [38], [39]. We propose a new scheme called
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Fig. 9. One-bit arithmetic shift right operation.

DASM (Divide, Accumulate and Sum Multiplication) to pro-
vide flexible word-length MAC operations targeting for the in-
struction oriented architecture. As described in [40], a MAC op-
eration can be expressed with lower precision multiplications as
in (1). and are the multiplicand and the multiplier, respec-
tively, where is the accumulation index. The scaling factor is
used to align the partially accumulated results for the summa-
tion. A partial multiplication can be expanded repeatedly with
half precision multiplications until it reaches atomic multipli-
cations. Partitioned multiplication results are partially accumu-
lated first, and scaled partial products are summed later. This
method enables high speed flexible word-length MAC opera-
tions, which can be accomplished with parallel 9-bit multipliers
(implemented with PEMs). Even though additional sum cycles
are required for the summation of partial products, MAC oper-
ations are accelerated with parallelized high speed multiplica-
tions, and summation of the partial products are required only
at the end on MAC iteration

(1)

where is the most significant part of A, is the least
significant part of A, is the bit width of A and B.

Fig. 10 illustrates the DASM procedure for 16 16 MAC
operations. Four iterative 16 16 MAC operations can be
performed with four 8 8 PEM units as shown in Fig. 10.
An XBSN divides multiplicands into 8-bit chunks and feeds
them (with the sign extension) to appropriate PEM units.
Each PEM accumulates four independent and divided MAC
operations in five cycles, and four partial results are summed
in four cycles including the XBSN pipeline cycles. FleXilicon
provides various types of single or multiple MAC operations
(such as sixteen 8 8, eight 16 8, five 24 8, four 32 8,

Fig. 10. Pipelined execution of the DASM.

four 16 16, two 24 16, two 32 16, and one 32 32
MAC) using 8 8 atomic MAC units of PEMs. An XBSN
supports various sizes of multiplicands necessary for flexible
word-length MAC operations.

Finally, 8-bit PEs in multiple PEMs can be concatenated to
construct a wide bit-width adder or subtractor, in which each PE
is configured as a carry selection adder to minimize the critical
path delay.

E. VLSI Implementations and Their Performance

FleXilicon with a single PES configuration was implemented
with a mix of standard cell based design and custom circuit
design in 65-nm CMOS SOI process technology. Local mem-
ories and high-speed data paths were implemented as custom
circuits, while the remaining blocks were implemented using
standard cells. A 64 64 bit multi-port RAM macro was devel-
oped to construct local memory blocks. To provide low latency,
a local memory was designed for single cycle memory access.
An XBSN was implemented with 2 1 and 4 1 multiplexers
composed of transmission gates.

Unlike conventional architectures with 16 or 32 bits as the
size for atomic operations, 8 bits are the atomic operation for
FleXilicon. Hence, high speed 8-bit adders are essential to
achieve high performance for FleXilicon. Existing high speed
adders focus on wide bit-width additions such as Breton Kung
(BK) [25], carry look-ahead adder (CLA) [26], bypass adder
[26], parallel prefix (PPrefix) [27], whose speed improvement
are rather insignificant for 8-bit additions. We investigated
speed optimization for 8-bit adders, which is based on a 1-bit
bypass scheme. Note that conventional bypass adders typically
bypass 4 bits, which are slow for 8-bit additions. Fig. 11 shows
the proposed 1-bit bypass scheme for 8-bit adders. The signal

, where , denotes that the carry propagates
from the previous bit stage. The signal is the carry signal from
the previous bit , and the signal is the carry signal from
the stage . The proposed adder is similar to a Manchester
carry-chain adder [26], besides it has a bypass path. Unlike
conventional bypass adders in which carry paths are isolated
from bypass paths, a carry and a bypass for the proposed adder
share the same path through incorporation of transmission
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Fig. 11. Proposed 1-bit bypass 8-bit adder.

TABLE I
CRITICAL PATH DELAY OF DIFFERENT TYPES OF 8-BIT ADDERS

gates. In other words, both and signals from the previous
stage drive the shared carry path of a stage. This scheme works
as the bypass signal, if arrives earlier than the carry, triggers
the shared carry path to accelerate the carry propagation on the
critical carry path.

For the comparison with previous adders, we synthesized the
BK, PPrefix, and CLA using Synopsys DesignWare library [28]
and implemented a carry ripple adder (CRA) at a schematic
level using a standard cell library. Critical path delays of synthe-
sized adders were obtained through static timing analysis using
Synopsys Primetime [29]. The delay of the proposed adder was
obtained through SPICE simulation. To calibrate static timing
analysis results with SPICE simulation results, the delay of the
CRA was simulated in both methods and compared the results
each other to obtain a calibration factor.

Table I shows critical path delays of various types of adders
for a CMOS SOI 65-nm technology under the supply voltage
of 1.3 V. The proposed adder has delay of only 84 ps, while all
other types of adders including a CRA have delays in the range
of 167 to 188 ps. The speedup of the proposed adder over other
types is about two times, which is crucial for high performance
of FleXilicon.

To improve the area efficiency and to optimize the routing,
key blocks of FleXilicon were placed manually. For other syn-
thesized blocks such as multipliers, Synopsys Physical Com-
piler was used for auto-placement and area/speed optimization,
Nanorouter of Cadence was for routing and an in-house tool of a

Fig. 12. Cell placement of a PES.

large semiconductor company was for power estimation. Single
cycle 9-bit Wallace tree multipliers were synthesized using De-
signWare library [28]. Fig. 12 shows the result of a cell place-
ment of a PES. The size of single PES is 2296 m 1880 m,
which is reasonable for constructing an array of PESs or inte-
gration of it as a coprocessor in SOC. We noticed that two local
memories (512 256 bits for each memory) occupy 74.6% of
the total area, 11.12% for 16 PEMs, and 5.9% for an XBSN.

Fig. 13 presents static timing analysis results for each
pipeline stage obtained using Synopsys PrimeTime [29].
“LD/ST” (Load/Store) is the memory access time for the
LD/ST pipeline stage, “XBSN” worst case delay for the XBSN
pipeline stage, “mult8” for 8-bit multiplications, “worst PE”
the worst case delay for the 8-bit configurable datapath of a
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Fig. 13. Static timing analysis of a PES.

TABLE II
COMPARISON OF POWER CONSUMPTION

PE, and “worst RCdp” the worst case delay for the reconfig-
urable controller datapath. Since FleXilicon can be configured
for a different word-length, we considered additions in three
different word-lengths—8 bits, 16 bits and 32 bits. Our results
indicate that multiplications and ALU operations can reach up
to 1 GHz of the clock speed, and some other operations such
as 16-bit MAC operations, 16-bit additions and 8-bit additions
can be performed at an even higher clock frequency.

We estimated the power consumption of FleXilicon with a
single PES under the supply voltage of 1.3 V, the temperature
of 100 C and the operating frequency of 1 GHz. Our simu-
lation results indicate FleXilicon consumes total 389.35 mW,
in which 16 PEMs consume 180.32 mW, an XBSN consumes
192.66 mW, and a local memory 16.37 mW. Compared to
TI DSP TMS320C64x and ARM processors as shown in
Table II, FleXilicon provides better power-performance effi-
ciency (MIPS/mW). However, since ARM 920T uses 130 nm,
TI DSP and ARM 1176 use 90 nm, and FleXilicon 65-nm
technology, a direct comparison is unfair and not meaningful.
The above comparisons may suggest only that FleXilicon’s
power consumption falls into a practical range.

IV. PERFORMANCE OF FLEXILICON

We modeled FleXilicon with a single PES in SystemC and
compared its performance with an ARM processor and a TI DSP
processor for several multimedia and wireless applications.

A. Simulation Environment

A system model for FleXilicon embedded in a SOC with
a host processor was developed using SystemC [30]. The
System-C offers an efficient modeling method for both software

Fig. 14. Loop mapping flow.

and hardware, and is suitable for modeling a SOC embedding
FleXilicon, which is modeled as a hardware block. Application
functions on the host processor were described in a C language.
A reconfigurable controller was implemented as a FSM (Finite
State Machine) using a SystemC hardware modeling feature,
which is mapped onto LUTs using an FPGA mapping tool.
The compiled SystemC model provides simulation platform
and infrastructure for verification, in which a golden model of
applications was compared against our implementation model.

Several steps are needed for efficient mapping of loops onto
FleXilicon, while exploiting the full capability of the FleXil-
icon architecture, and the overall procedure is shown in Fig. 14.
The loop extraction step extracts loop bodies (to be executed
on FleXilicon) from C code of target applications. A loop body
is selected carefully considering the task size and the memory
usage through profiling of loops. The interface between the soft-
ware kernel and FleXilicon is also developed in this step. The
loop mapping step maps the operations of each extracted loop
body onto PEMs. The step involves various tasks such as opti-
mization of loop bodies, assignment of operations into reconfig-
ured instructions, scheduling of operations, and generation of a
controller function (to define the functionality of the datapaths).

For the future research on the compiler for the FleXil-
icon architecture, several existing methods can be applied.
For example, conventional compiler techniques with some
modifications may be used to automate loop extraction and
loop mapping procedures. Conventional HW/SW partition
algorithms can be applied to select loops to be mapped onto
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FleXilicon. Graph transformation techniques such as loop
unrolling, graph merging, and tree height reduction techniques
can be used to optimize the loops. Various existing high level
synthesis algorithms such as scheduling, resource allocation
can be employed for an optimal loop mapping.

Once loops are mapped, a controller model can be devel-
oped as a finite-state machine (FSM) (using a hardware de-
scription language) according to the loop mapping. The con-
troller model is synthesized, converted into field-programmable
gate-array (FPGA) mapping data and loaded into LUTs of the
reconfigurable controller of FleXilicon.

For performance comparison, a Viterbi decoder, a 16 16
sum of absolute difference (SAD), a discrete fourier transform
(DFT) block for a global positioning system (GPS), a GSM
pulse shaping filter, an MP3 cosine filter were implemented on
single PES using the SystemC model. The Viterbi decoder is
based on soft-decision with the constraint length 9 and the 1/2
rate meeting IS-95 standard. Major critical functions such as
the branch and path metrics and the add compare select (ACS)
were implemented by mapping the 256-iteration loop onto the
PES. The 16 16 SAD is a key operation for motion estimation
in the H.264 [31], which repeats single pixel SAD operation
256 times with 256 pixel positions and accumulates the SAD
values. The remaining three implementations involve MAC op-
erations with different bit-widths and are frequently used in mul-
timedia and wireless communications. The DFT for GPS is used
to find peak energy, and it can be implemented with 8-bit 8-bit
MAC operations [34]. The GSM pulse shaping filter is used
to attenuate sidelobes of GSM modulation signals, which can
be implemented with 16-bit 8-bit MAC operations [32]. Fi-
nally, the MP3 cosine filter is used for generation of sub-band
audio signals for MPEG audio, which can be implemented with
16-bit 16-bit MAC operations [33]. The three implementa-
tions are useful to compare the effectiveness of the SWP for a
given architecture.

The performance of FleXilicon was compared with an
ARM processor [35] and TI 320C64xx DSP chip [36]. ARM
processors based on the RISC architecture are widely used as
embedded processors in industry. TI 320C64xx DSP is high
end DSP chips and adopts an 8-way VLIW architecture. An
ARMCC compiler, an ARM emulator, a TI C compiler and a TI
DSP simulator were used for compilation and cycle profiling.
Profiling results for the three different architectures did not
include steps for preload of initialization data.

B. Simulation Results

Simulation results for the Viterbi decoder and the 16 16
SAD operation are shown in Table III. The top entry of a cell
represents the number of cycles or the execution time, and the
bottom entry (in bold) is the ratio of FleXilicon to the particular
item. For the Viterbi decoder, the numbers of clock cycles re-
quired for updating the state metric for one stage were profiled
for the three different processors. FleXilicon requires only 12
cycles for the update, while about 16 200 cycles for the ARM
processor and 3400 cycles for the TI DSP. The reduction ratio
of the cycles for FleXilicon is 1351 over the ARM processor and
283 over the TI DSP. Assuming FleXilicon running at 1 GHz,
the speedup for FleXilicon is about 2180 times over the ARM

TABLE III
PERFORMANCE OF FLEXILICON FOR VITERBI AND SAD OPERATIONS

processor and about 235 times over the TI DSP. FleXilicon also
reduces the number of clock cycles and the execution time for
SAD calculations over the other two implementations, but the
reduction ratios are smaller than that for the Viterbi decoder. The
speedup of FleXilicon for the SAD calculations is 452 over the
ARM processor and 4.73 over the TI DSP. Note that the results
were obtained for single PES for FleXilicon, and the number of
PESs can be scaled readily for further speedup, if needed.

The previous simulation results intrigued us to investigate
the performance gain for FleXilicon. To the end, we analyzed
the performance gain factors of FleXilicon over ARM 1176
processor for the case of the Viterbi decoder. We considered
four performance factors for the Viterbi decoder, namely
op/loop, op/inst, cycles/inst, and LLP. The “op/loop” indicates
the number of operations necessary to update states
for a 256-iterative loop. The “op/inst” indicates the number
of operations executed per instruction for the loop, and “cy-
cles/inst” the number of cycles per instruction. The LLP, as
usual, denotes the number of loops which can be executed
simultaneously.

The parameter values are shown in Table IV. FleXilicon
improves the “op/loop” by five times over ARM processor. This
improvement for FleXilicon is due to optimization of the loop
body through operation sharing and data reuse. However, such
an optimization is not feasible for the ARM processor, since the
optimization requires additional instruction cycles combined
with the scarcity of registers for data reuse. The “op/inst,” the
number of operations per instruction, is two for FleXilicon,
since FleXilicon can execute multiple operations for single
instruction using reconfigured datapath. However, it is only
0.33 for ARM 1176. In other words, execution of single Viterbi
decoder operation requires execution of three instructions, on
average. We noticed that many Viterbi operations are for data
move, load/store, and branch operations as well as arithmetic
operations, some such as load/store require multiple instruction
cycles for the ARM processor. In contrast, all of those instruc-
tions can be implemented in one clock cycle for all instructions
for FleXilicon. Finally, the largest gain comes from LLP, which
is 32 for FleXilicon and one for the ARM processor. The four
gain parameters explain the overall performance gain of 1351
for FleXilicon over ARM 1176.

Simulation results for three different MAC operations are
shown in Table V. “Cycles/MAC” in the table indicates the
average number of clock cycles per MAC operation, which is
a good metric for architectural performance. The table shows
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TABLE IV
PERFOMANCE PARAMETERS FOR A VITERBI DECODER

TABLE V
PERFORMANCE OF FLEXILICON FOR FILTER OPERATIONS

TABLE VI
IMPLEMENTATIONS OF A CONTROLLERS

that FleXilicon requires less number of clock cycles over the
ARM processor and the TI DSP for the three filter implemen-
tations. The speedup is larger for the GPS, which is as large as
81 over the ARM processor. This is because the GPS requires
low precision multiplications (8-bit 8-bit) to result in high de-
gree of parallelism for FleXilicon owing to the proposed DASM
scheme and the SWP. The average number of clock cycles per
MAC operation is also less for FleXilicon over the ARM pro-
cessor and the TI DSP, and the reduction ratio is greater for
the GPS than the other two processors. The reduction ratio of
the clock cycles/MAC operation is dependent on the architec-
ture alone, not the speed of the underlying circuit. Therefore,
we can state that the architecture of FleXilicon is superior to
the other two competing processors, especially for low preci-
sion multiplications.

Table VI shows implementations of controllers in random
logic and on an FPGA. Controllers were designed in SystemC
and converted into synthesizable HDL using Synopsys. Then, it
was synthesized and mapped onto a Xilinx Virtex2 FPGA using
ISE tool [37]. As shown in the table, a controller for the Viterbi
decoder and a 16 16 SAD block can be implemented with 116
and 77 NAND2 equivalent gates, respectively. When the two con-
trollers are mapped onto the FPGA, each one occupies less than
3% of the available resources for a Xilinx Virtex2 xc2v40 [37],
which is the smallest version of the Virtex2 family.

TABLE VII
DATA TRANSFER RATE BETWEEN MEMORIES

The timing analysis results for both FSMs on a Xilinx Virtex2
xc5vlx30 speed grade suggest that the FSM for SAD can run
up to 871 MHz and one for Viterbi 646 MHz. This implies that
the FPGA speed is the limiting performance factor for FleXil-
icon when a conventional FPGA is employed as the controller.
However, we expect that FPGAs will achieve higher clock fre-
quency in future through process migration and optimization of
LUT blocks.

C. Analysis of Data Transfer and Memory Usage

As mentioned in the earlier section, memory bandwidth is a
critical design parameter affecting performance. We analyzed
external data transfer rates between the memory of the host pro-
cessor and local memories of FleXilicon for five applications,
and internal data transfer rates between local memories and
PEMs within FleXilicon. As shown in Table VII, the highest
external memory transfer rate of 499 MB is required for read
operations of the GSM application. The required maximal in-
ternal memory transfer rate reaches up-to 48.9 GB/s for read op-
erations of the SAD application. As described in Section III-B,
FleXilicon can support a high internal memory bandwidth of
up to 64 GB/s. In fact, we noticed that FleXilicon does not
cause any memory bottleneck for all the applications. The re-
quired maximal memory transfer rate is relatively low in FleX-
ilicon, as a good portion of input and intermediate data is reused
within the local memory to reduce the need for external memory
transfers. Note that the required transfer rate can be achieved
readily by a conventional direct memory access (DMA) or a
memory bus coupled with an on-chip secondary SRAM and
off-chip synchronous DRAM (SDRAM). A reuse rate is the
ratio of the data transfer rate of internal transfer to that for the
external transfer, and it is affected by the size of the task and
the size of the local memory. The reuse rate is calculated as

—(External Transfer Rate/Internal Transfer Rate) and is
also shown in Table VII. The table shows high reuse rates for
read operations for all applications except MP3. A higher reuse
rate leads to less frequent external memory accesses, which re-
duces the amount of the external data transfer.

Major resource necessary to run different applications on
FleXilicon is memory. To assess whether the 16 kB local mem-
ories are enough, we profiled maximum memory usage of RAM
and ROM data required for the five example applications, and
they are shown in Table VIII. The RAM data for an application
includes input stream data, intermediate results, and output
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TABLE VIII
MAXIMUM MEMORY USAGE IN APPLICATIONS

stream data. The ROM data is for filter coefficients, which are
static during the execution. The MP3 application requires the
largest RAM size of 3.38 kB because of a higher tap count for
the filter and the GSM of the smallest size of 0.33 kB. Based
on memory usage analysis, 16 kB local memory is enough for
all the five tasks, even they run simultaneously.

Finally, it is important to note that the ARM processor and the
TI DSP are general purpose and programmable, while FleXil-
icon is targeted for specific applications, wireless communica-
tions and multimedia. So the performance comparisons reported
in this section would be more favorable to FleXilicon. So the
comparison results should be interpreted judiciously.

V. CONCLUSION

In this paper, we presented a new coarse-grained reconfig-
urable architecture called FleXilicon, which improves resource
utilization and achieves a high degree of LLP. The proposed
architecture mitigates major shortcomings in existing architec-
tures through wider memory bandwidth, reconfigurable con-
trollers, and flexible word-length support. The proposed wide
bandwidth memory system enables a high degree of the LLP.
The proposed reconfigurable controller addresses the shortcom-
ings such as area inefficiency and speed overhead of existing
memory based controllers. The proposed flexible word-length
scheme enhances sub-word parallelism. VLSI implementation
of FleXilicon indicates that the proposed pipeline architecture
can achieve a high speed operation up to 1 GHz using 65-nm
SOI CMOS process with moderate silicon area. To estimate
the performance of FleXilicon, we implemented five different
types of applications commonly used in wireless communica-
tion and multimedia applications and compared its performance
with an ARM processor and a TI DSP. The simulation results
indicate that FleXilicon reduces the number of clock cycles and
increases the speed for all five applications. The reduction and
speedup ratios are as large as two orders of magnitude for some
applications.
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