A Class F⁻¹/F 24-to-31GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB} , and 50mW P_{sat} in 0.13µm SiGe BiCMOS

Seyed Yahya Mortazavi

Kwang-Jin Koh Multifunctional Integrated Circuits & Systems Group Virginia Tech, Blacksburg, VA

14.4: A Class-F⁻¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13μm SiGe BiCMOS

Outline

- Background / Motivation
 - Challenge in Silicon mm-Wave PAs
 - Efficiency of mm-Wave PAs
 - Harmonic Tuned (Class-F⁻¹, Class-F) PAs
- Class-F⁻¹ to Class-F Mode-Transition PA Design
- Measurement Results
- Conclusion

Challenge in Silicon mm-Wave PAs

- Speed-breakdown tradeoff
- Not sufficient silicon transistor speed (f_T, f_{max}) for mm-wave
 - ⇒ Small P_{out} per PA stage

- Power combining with a PA-array can increase Pout.

⇒ Low power-added efficiency (PAE)

- It is critical to improve unit PA's PAE to improve overall PAE in a PA-array.

- Relatively, a lack of research on efficient PA topology suitable for mm-wave.

Efficiency of mm-Wave PAs

- With <u>Class-AB</u>, ~30% PAE has been reported at 60 GHz in 40 nm CMOS.
- <u>Class-E</u> PA has achieved ~30-35% PAE at ~45 GHz in 45 nm SOI CMOS.
- While potentially viable technology, harmonic-tuned approaches (Class-F, Class-F⁻¹) has not been explored yet at mm-wave.

Harmonic Tuned (Class-F, Class-F⁻¹) PAs

Harmonic Tuned (Class-F, Class-F⁻¹) PAs

(e.g. practical max. $\eta \sim 90\% x (V_{CC} - V_{knee}) / V_{CC} = 68\%$ if $V_{CC} = 2V \& V_{knee} = 0.5V$).

Pros:

- Current-mode: power transistor operates as a current source
- Class-AB biasing: fast speed, high gain
- No switching loss involved
- On-chip high-Q L-C networks are readily available for harmonic-Z control @mm-wave

Harmonic Tuned (Class-F, Class-F⁻¹) PAs

Pros:

Cons:

- Current-mode: power transistor operates as a current source
- Class-AB biasing: fast speed, high gain
- No switching loss involved

Narrowband PAE

 On-chip high-Q L-C networks are readily available for harmonic-Z control @mm-wave
 Class-F or Class-F⁻¹@f_c
 Class-F⁻¹@f_L → Class-F @f_H

$$PAE \uparrow f_L f_C f_H f_L f_L f_C f_H f_L f_L f_C f_H f_L$$

→ Need a wideband technique: motivation of *"mode-transition" operation.*

Proposed Class-F⁻¹ to Class-F Mode-Transition PA

C_{B1,2}:DC decoupling

Class-F⁻¹ to Class-F Mode-Transition PA (1)

C_{B1,2}:DC decoupling

- <u>Class-AB biasing</u>: V_{BE} =0.85 V & I_{CE}=9 mA (V_{CC}=2.2 V, V_{knee}=0.5 V)
- Sizing for peak f_T (~180 GHz) @P_{sat}=50 mW
- Impedance seen from base is < 300-Ω so that V_{CE, peak} ~ 3xBV_{CEO}~5 V @Class-F⁻¹ (BV_{CEO}~1.7 V & BV_{CBO}~5.5 V)

Class-F⁻¹ to Class-F Mode-Transition PA (2)

- Π-matching network provides a wideband Z-matching: S₁₁ < -10 dB @23-31 GHz (sim.).
- C_{pi} includes base-node parasitic capacitances including layout parasitics.
- 2.5 Ω base resistance stabilizes the PA over all operation frequencies.

Class-F⁻¹ to Class-F Mode-Transition PA (3)

- Z_{PL} & Z_{SL} comprise multi-resonance harmonic tuned load, cooperatively shaping an optimum load impedance for Class-F⁻¹ and Class-F operations.
- C_p includes collector-node parasitic capacitances including layout parasitics.
- L2-C1 tank impedance variation over harmonic frequencies plays a key role in transferring from Class-F⁻¹ to Class-F over 24-31 GHz (see next slides).

© 2014 IEEE International Solid-State Circuits Conference

Load Network with F⁻¹/F Mode Transition (1)

International Solid-State Circuits Conference

14.4: A Class-F⁻¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13μm SiGe BiCMOS

Load Network with F⁻¹/F Mode Transition (2)

International Solid-State Circuits Conference

14.4: A Class-F¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13μm SiGe BiCMOS

Load Network with F⁻¹/F Mode Transition (3)

International Solid-State Circuits Conference

14.4: A Class-F⁻¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13μm SiGe BiCMOS

Load Network with F⁻¹/F Mode Transition (4)

© 2014 IEEE International Solid-State Circuits Conference 14.4: A Class-F⁻¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13μm SiGe BiCMOS

Load Network with F⁻¹/F Mode Transition (5)

14.4: A Class-F¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13 μ m SiGe BiCMOS

Load Network with F⁻¹/F Mode Transition (6)

17 of 27

Simulated Collector V-I Waveforms (1)

^{© 2014} IEEE International Solid-State Circuits Conference

^{14.4:} A Class-F⁻¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13μm SiGe BiCMOS

Simulated Collector V-I Waveforms (2)

Transition mode @29-GHz

- Transitional ambivalent voltage waveforms between Class-F⁻¹ & Class-F.
- Still can maintain a high-efficiency (similar to "continuous Class-F").

14.4: A Class-F¹/F 24-to-31 GHz Power Amplifier with 40.7% Peine (PAR), 15dBm OP 1dB, and 50mW Psat in 0.13µm SiGe BiCMOS

Chip Photograph

- IBM 8HP SiGe BiCMOS (f_T =180 GHz, f_{max} =200 GHz)
- Chip area: 0.6x0.45 mm² (w/i pads), 0.48x0.3 mm² (w/o pads)

Small-Signal S-Parameters

- SOLT calibration
- Class-AB biasing

- S₂₁ = 9-10.8 dB : 24~31 GHz
- S₁₁ < -10 dB : 22.5~32 GHz</p>

K-factor > 1

14.4: A Class-F⁻¹/F 24-to-31 GHz Power Amplifier with 40.7% Peak PAE, 15dBm OP_{1dB}, and 50mW P_{sat} in 0.13μm SiGe BiCMOS

Large-Signal Measurement Setup

Power Calibration

- L₁, L₂ & L₃: cable losses, L₄: coupler loss (typ. 10 dB @24-31 GHz)
- $P_{in} = P_{RFi} L_1 + L_2 + L_4$ (dB)
- $P_{out} = P_{RFo} + L_3$ (dB)

$$PAE = (P_{out} - P_{in}) / P_{DC}$$

Large-Signal Performance (1)

Large-Signal Performance (2)

- PAE: 39.3-40.7% @ 25-30 GHz
- PAE > 36% @24-31 GHz
 Note: due to mode-transition, the PA can maintain ~40% PAE over 25-30 GHz.
- PAE: 39.6-40.7% @ V_{cc}=1.3-2.3 V

Note: it can maintain ~40% PAE over 1-V V_{cc} variations with ~6-dB P_{out} variations.

Performance Summary & Comparison

Authors	Freq.(GHz)	PAE (%)	P _{sat} (dBm)	OP _{-1dB} (dBm)Gain (dB)	Size (mm²)	Supply(V)	Process
This Work	25-30 24-31	39.3-40.7 36.3-40.7	17.1	15	10.3	0.27(0.14*) * w/o pad	2.2	0.13μ <mark>m SiG</mark> e
JSSC 2005 A. Komijani, <i>et al</i> .	24	6.5	14.5	11	7	1.26	2.8	0.18µm CMOS
RFIC 2007 M. Chang, <i>et al</i> .	33	11.2	17	15.5	13	1.83	1.4	0.13µm SiGe
JSSC 2005 T.S.D. Cheung, <i>et al</i> .	22 24	19.7 13	20-23	NA	15-19	6	1.8	0.2µm SiGe
RFIC 2005 N. Kinayman, <i>et al</i> .	24	2.9	12	11	18	1.1	5	0.5µm SiGe
T-MTT 2012 N. Kalantari, <i>et al</i> .	38	20	23	NA	18.7	1.04	3	0.12µm SiGe
CICC 2012 A. Chakrabarti, <i>et al</i> .	47	34.6	17.6	NA	13	0.12	2.5	45nm SOI CMOS
CICC 2012 K. Datta, <i>et al</i> .	45	31.5	20.2	NA	10.5	1.3	2.4	0.13µm SiGe
T-MTT 2012 PC. Huang, <i>et al</i> .	24-26	40	23.5	22	9	1.5	4	GaAs HEMT
RFIC 2013 N. Kinayman, <i>et al</i> .	26.4	38	25.3	NA	10.3	25	5	GaAs HEMT
MTTs 2012 C.F. Campbell, <i>et al</i> .	29	30	37	NA	25	4.8	20	GaN HEMT

•

- First successful silicon PA in Class-F⁻¹ and Class-F at mm-wave with a record ~40% peak PAE at 25-30 GHz.
- First successful realization of a mode-transition mm-wave PA to achieve a high PAE over a wideband: 24-31 GHz (25.5% fractional BW) with PAE > 36%.
- A linear mode (Class-AB) PAE with 6-dB back-off is ~26%, still comparable to peak PAE of state-of-the-art silicon PAs.
- With 16x power combining, potentially it can achieve > 20% PAE with Watt-level P_{out}.

Acknowledgements

- DARPA program, Silicon Based Phased Array Tiles for Multifunctional RF Sensors, under a subcontract from University of California San Diego (UCSD).
- Prof. G. M. Rebeiz (UCSD) for financial and measurement support.
- Dr. M. Chang (Univ. Michigan), Fatih Golcuk (UCSD), and Hsin-chang Lin (UCSD) for help in PAE measurements.

